-
1
-
-
33745456231
-
Semi-Supervised Learning Literature Survey, Computer Science Technical Report 1530
-
University of Wisconsin-Madison
-
X. Zhu, Semi-Supervised Learning Literature Survey, Computer Science Technical Report 1530, University of Wisconsin-Madison, vol. 2, 2005, 3.
-
(2005)
, vol.2
, pp. 3
-
-
Zhu, X.1
-
2
-
-
70349871686
-
Semiboost. boosting for semi-supervised learning
-
Mallapragada P.K., Jin R., Jain A.K., Liu Y. Semiboost. boosting for semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(11):2000-2014.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.11
, pp. 2000-2014
-
-
Mallapragada, P.K.1
Jin, R.2
Jain, A.K.3
Liu, Y.4
-
3
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neurocomputing 2003, 15(6):1373-1396.
-
(2003)
Neurocomputing
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
4
-
-
77952552460
-
Classification by semi-supervised discriminative regularization
-
Wu F., Wang W., Yang Y., Zhuang Y., Nie F. Classification by semi-supervised discriminative regularization. Neurocomputing 2010, 73(10-12):1641-1651.
-
(2010)
Neurocomputing
, vol.73
, Issue.10-12
, pp. 1641-1651
-
-
Wu, F.1
Wang, W.2
Yang, Y.3
Zhuang, Y.4
Nie, F.5
-
5
-
-
84862198325
-
Semi-supervised distance metric learning based on local linear regression for data clustering
-
Zhang H., Yu J., Wang M., Liu Y. Semi-supervised distance metric learning based on local linear regression for data clustering. Neurocomputing 2012, 93:100-105.
-
(2012)
Neurocomputing
, vol.93
, pp. 100-105
-
-
Zhang, H.1
Yu, J.2
Wang, M.3
Liu, Y.4
-
6
-
-
78649409198
-
Sparse semi-supervised learning using conjugate functions
-
Sun S., Shawe-Taylor J. Sparse semi-supervised learning using conjugate functions. J. Mach. Learn. Res. 2010, 11:2423-2455.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2423-2455
-
-
Sun, S.1
Shawe-Taylor, J.2
-
7
-
-
84255197089
-
Multi-view Laplacian support vector machines
-
Lecture Notes in Artificial Intelligence, vol. 7121, Springer, Beijing, China
-
S. Sun, Multi-view Laplacian support vector machines, in: Lecture Notes in Artificial Intelligence, vol. 7121, Springer, Beijing, China. 2011, pp. 209-222.
-
(2011)
, pp. 209-222
-
-
Sun, S.1
-
9
-
-
33750729556
-
Manifold regularization. a geometric framework for learning from labeled and unlabeled examples
-
Belkin M., Niyogi P., Sindhwani V. Manifold regularization. a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
10
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
International Conference on Machine Learning
-
X. Zhu, Z. Ghahramani, J. Lafferty, et al., Semi-supervised learning using Gaussian fields and harmonic functions, in: International Conference on Machine Learning, vol. 3, 2003, pp. 912-919.
-
(2003)
, vol.3
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
11
-
-
84899006908
-
Learning with local and global consistency
-
Zhou D., Bousquet O., Lal T.N., Weston J., Schölkopf B. Learning with local and global consistency. Adv. Neural Inf. Process. Syst. 2004, 16(16):321-328.
-
(2004)
Adv. Neural Inf. Process. Syst.
, vol.16
, Issue.16
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
12
-
-
78649326338
-
Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions
-
Chen K., Wang S. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(1):129-143.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.1
, pp. 129-143
-
-
Chen, K.1
Wang, S.2
-
13
-
-
67650998686
-
Linear neighborhood propagation and its applications
-
Wang J., Wang F., Zhang C., Shen H.C., Quan L. Linear neighborhood propagation and its applications. IEEE Trans. Pattern Anal. Mach. Intel. 2009, 31(9):1600-1615.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intel.
, vol.31
, Issue.9
, pp. 1600-1615
-
-
Wang, J.1
Wang, F.2
Zhang, C.3
Shen, H.C.4
Quan, L.5
-
14
-
-
70450170579
-
Robust multi-class transductive learning with graphs
-
IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, Florida, USA.
-
W. Liu, S.-F. Chang, Robust multi-class transductive learning with graphs, in: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, Florida, USA. 2009, pp. 381-388.
-
(2009)
, pp. 381-388
-
-
Liu, W.1
Chang, S.-F.2
-
15
-
-
71149102018
-
Graph construction and b-matching for semi-supervised learning
-
Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Quebec, Canada.
-
T. Jebara, J. Wang, S.-F. Chang, Graph construction and b-matching for semi-supervised learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Quebec, Canada. 2009, pp. 441-448.
-
(2009)
, pp. 441-448
-
-
Jebara, T.1
Wang, J.2
Chang, S.-F.3
-
16
-
-
84870197517
-
Robust recovery of subspace structures by low-rank representation
-
Liu G., Lin Z., Yan S., Sun J., Yu Y., Ma Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 171-184.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, pp. 171-184
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Yu, Y.5
Ma, Y.6
-
17
-
-
84901490734
-
A review of subspace segmentation. problem, nonlinear approximations and applications, to motion segmentation
-
Aldroubi A. A review of subspace segmentation. problem, nonlinear approximations and applications, to motion segmentation. ISRN Signal Process. 2013, 2013:1-13.
-
(2013)
ISRN Signal Process.
, vol.2013
, pp. 1-13
-
-
Aldroubi, A.1
-
18
-
-
50949096624
-
Estimation of subspace arrangements with applications in modeling and segmenting mixed data
-
Ma Y., Yang A.Y., Derksen H., Fossum R. Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 2008, 50(3):413-458.
-
(2008)
SIAM Rev.
, vol.50
, Issue.3
, pp. 413-458
-
-
Ma, Y.1
Yang, A.Y.2
Derksen, H.3
Fossum, R.4
-
19
-
-
77951256374
-
Robust algebraic segmentation of mixed rigid-body and planar motions from two views
-
Rao S.R., Yang A.Y., Sastry S.S., Ma Y. Robust algebraic segmentation of mixed rigid-body and planar motions from two views. Int. J. Comput. Vis. 2010, 88(3):425-446.
-
(2010)
Int. J. Comput. Vis.
, vol.88
, Issue.3
, pp. 425-446
-
-
Rao, S.R.1
Yang, A.Y.2
Sastry, S.S.3
Ma, Y.4
-
21
-
-
70450184118
-
Sparse subspace clustering
-
IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, Florida, USA.
-
E. Elhamifar, R. Vidal, Sparse subspace clustering, in: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, Florida, USA. 2009, pp. 2790-2797.
-
(2009)
, pp. 2790-2797
-
-
Elhamifar, E.1
Vidal, R.2
-
22
-
-
58149494138
-
Spectral curvature clustering (scc)
-
Chen G., Lerman G. Spectral curvature clustering (scc). Int. J. Comput. Vis. 2009, 81(3):317-330.
-
(2009)
Int. J. Comput. Vis.
, vol.81
, Issue.3
, pp. 317-330
-
-
Chen, G.1
Lerman, G.2
-
23
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition
-
pp. 1031-1044
-
Wright J., Ma Y., Mairal J., Sapiro G., Huang T.S., Yan S. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, Special Issue on Applications of Compressive Sensing & Sparse Representation 2010, vol. 98(6). pp. 1031-1044.
-
(2010)
Proceedings of the IEEE, Special Issue on Applications of Compressive Sensing & Sparse Representation
, vol.98
, Issue.6
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.S.5
Yan, S.6
-
24
-
-
84897565618
-
Revisiting the nyström method for improved large-scale machine learning
-
International Conference on Machine Learning
-
A. Gittens, M.W. Mahoney, Revisiting the nyström method for improved large-scale machine learning, in: International Conference on Machine Learning, 2013.
-
(2013)
-
-
Gittens, A.1
Mahoney, M.W.2
-
25
-
-
72749110068
-
Semi-supervised learning by sparse representation
-
SIAM International Conference on Data Mining
-
S. Yan, H. Wang, Semi-supervised learning by sparse representation, in: SIAM International Conference on Data Mining, 2009, pp. 792-801.
-
(2009)
, pp. 792-801
-
-
Yan, S.1
Wang, H.2
-
26
-
-
77949722130
-
Learning with l1graph for image analysis
-
Cheng B., Yang J., Yan S., Fu Y., Huang T.S. Learning with l1graph for image analysis. IEEE Trans. Image Process. 2010, 19(4):858-866.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.4
, pp. 858-866
-
-
Cheng, B.1
Yang, J.2
Yan, S.3
Fu, Y.4
Huang, T.S.5
-
27
-
-
84885841484
-
Manifold-preserving graph reduction for sparse semi-supervised learning, Neurocomputing
-
doi:10.1016/j.neucom.2012.08.070
-
S. Sun, Z. Hussain, J. Shawe-Taylor, Manifold-preserving graph reduction for sparse semi-supervised learning, Neurocomputing. 124 (2014) 13-21. doi:10.1016/j.neucom.2012.08.070.
-
(2014)
, vol.124
, pp. 13-21
-
-
Sun, S.1
Hussain, Z.2
Shawe-Taylor, J.3
-
28
-
-
84866660023
-
Non-negative low rank and sparse graph for semi-supervised learning
-
IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, RI USA
-
L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, N. Yu, Non-negative low rank and sparse graph for semi-supervised learning, in: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, RI USA, 2012, pp. 2328-2335.
-
(2012)
, pp. 2328-2335
-
-
Zhuang, L.1
Gao, H.2
Lin, Z.3
Ma, Y.4
Zhang, X.5
Yu, N.6
-
29
-
-
84863979867
-
Multi-view automatic target recognition using joint sparse representation
-
Zhang H., Nasrabadi N.M., Zhang Y., Huang T.S. Multi-view automatic target recognition using joint sparse representation. IEEE Trans. Aerosp. Electron. Syst. 2012, 48:2481-2497.
-
(2012)
IEEE Trans. Aerosp. Electron. Syst.
, vol.48
, pp. 2481-2497
-
-
Zhang, H.1
Nasrabadi, N.M.2
Zhang, Y.3
Huang, T.S.4
-
30
-
-
84881041271
-
L 2, 1-norm regularized discriminative feature selection for unsupervised learning
-
Proceedings of the Twenty-Second international joint conference on Artificial Intelligence, AAAI Press, Menlo Park, California
-
Y. Yang, H.T. Shen, Z. Ma, Z. Huang, X. Zhou, L 2, 1-norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second international joint conference on Artificial Intelligence, AAAI Press, Menlo Park, California, 2011, pp. 1589-1594.
-
(2011)
, pp. 1589-1594
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
-
31
-
-
79958747925
-
Mixture of manifolds clustering via low rank embedding
-
Liua R., Haoa R., Sua Z. Mixture of manifolds clustering via low rank embedding. J. Inf. Comput. Sci. 2011, 8(5):725-737.
-
(2011)
J. Inf. Comput. Sci.
, vol.8
, Issue.5
, pp. 725-737
-
-
Liua, R.1
Haoa, R.2
Sua, Z.3
-
32
-
-
85162350693
-
Linearized alternating direction method with adaptive penalty for low-rank representation
-
Lin Z., Liu R., Su Z. Linearized alternating direction method with adaptive penalty for low-rank representation. Neural Inf. Process. Syst. 2011, 2:612-620.
-
(2011)
Neural Inf. Process. Syst.
, vol.2
, pp. 612-620
-
-
Lin, Z.1
Liu, R.2
Su, Z.3
-
33
-
-
77956529193
-
Robust subspace segmentation by low-rank representation
-
Proceedings of the 27th International Conference on Machine Learning
-
G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in: Proceedings of the 27th International Conference on Machine Learning, 2010, pp. 663-670.
-
(2010)
, pp. 663-670
-
-
Liu, G.1
Lin, Z.2
Yu, Y.3
-
34
-
-
52749089499
-
Graph Laplacian tomography from unknown random projections
-
Coifman R.R., Shkolnisky Y., Sigworth F.J., Singer A. Graph Laplacian tomography from unknown random projections. IEEE Trans. Image Process. 2008, 17(10):1891-1899.
-
(2008)
IEEE Trans. Image Process.
, vol.17
, Issue.10
, pp. 1891-1899
-
-
Coifman, R.R.1
Shkolnisky, Y.2
Sigworth, F.J.3
Singer, A.4
-
35
-
-
35148813570
-
Learning a spatially smooth subspace for face recognition
-
Conference on Computer Vision and Pattern Recognition, IEEE, Minneapolis, Southern Minnesota, USA
-
D. Cai, X. He, Y. Hu, J. Han, T. Huang, Learning a spatially smooth subspace for face recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Minneapolis, Southern Minnesota, USA, 2007, pp. 1-7.
-
(2007)
, pp. 1-7
-
-
Cai, D.1
He, X.2
Hu, Y.3
Han, J.4
Huang, T.5
-
36
-
-
50649123949
-
Spectral regression for efficient regularized subspace learning
-
Proceedings of the 11th International Conference on Computer Vision, IEEE, Rio de Janeiro, Brazil
-
D. Cai, X. He, J. Han, Spectral regression for efficient regularized subspace learning, in: Proceedings of the 11th International Conference on Computer Vision, IEEE, Rio de Janeiro, Brazil. 2007, pp. 1-8.
-
(2007)
, pp. 1-8
-
-
Cai, D.1
He, X.2
Han, J.3
-
37
-
-
71149120543
-
Probabilistic dyadic data analysis with local and global consistency
-
Proceedings of the 26th Annual International Conference on Machine Learning
-
D. Cai, X. Wang, X. He, Probabilistic dyadic data analysis with local and global consistency, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 105-112.
-
(2009)
, pp. 105-112
-
-
Cai, D.1
Wang, X.2
He, X.3
-
38
-
-
0003840341
-
Columbia Object Image Library (coil-20), Technical Report CUS-005-96, Columbia University, USA
-
S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (coil-20), Technical Report CUS-005-96, Columbia University, USA, 1996.
-
(1996)
-
-
Nene, S.A.1
Nayar, S.K.2
Murase, H.3
-
39
-
-
33845572523
-
Beyond bags of features: spatial pyramid matching for recognizing natural scene categories
-
Computer Vision and Pattern Recognition, vol. 2, IEEE, New York, USA.
-
S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: Computer Vision and Pattern Recognition, vol. 2, IEEE, New York, USA. 2006, pp. 2169-2178.
-
(2006)
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
40
-
-
84901483975
-
-
Learning multiple layers of features from tiny images (Masters thesis), Department of Computer Science, University of Toronto
-
A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images (Masters thesis), Department of Computer Science, University of Toronto, 2009.
-
(2009)
-
-
Krizhevsky, A.1
Hinton, G.2
-
41
-
-
79959532395
-
Graph regularized nonnegative matrix factorization for data representation
-
Cai D., He X., Han J., Huang T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(8):1548-1560.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.8
, pp. 1548-1560
-
-
Cai, D.1
He, X.2
Han, J.3
Huang, T.S.4
-
42
-
-
80052892989
-
Nonnegative sparse coding for discriminative semi-supervised learning
-
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Colorado Springs, USA.
-
R. He, W.-S. Zheng, B.-G. Hu, X.-W. Kong, Nonnegative sparse coding for discriminative semi-supervised learning, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Colorado Springs, USA. 2011, pp. 2849-2856.
-
(2011)
, pp. 2849-2856
-
-
He, R.1
Zheng, W.-S.2
Hu, B.-G.3
Kong, X.-W.4
-
43
-
-
80054993407
-
Semi-supervised classification based on random subspace dimensionality reduction
-
Yu G., Zhang G., Domeniconi C., Yu Z., You J. Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recognit. 2012, 45(3):1119-1135.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.3
, pp. 1119-1135
-
-
Yu, G.1
Zhang, G.2
Domeniconi, C.3
Yu, Z.4
You, J.5
-
44
-
-
17044376078
-
Subspace clustering for high dimensional data. a review
-
Parsons L., Haque E., Liu H. Subspace clustering for high dimensional data. a review. ACM SIGKDD Explor. Newsl. 2004, 6(1):90-105.
-
(2004)
ACM SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
|