메뉴 건너뛰기




Volumn , Issue , 2009, Pages 105-112

Probabilistic dyadic data analysis with local and global consistency

Author keywords

[No Author keywords available]

Indexed keywords

DATA ANALYSIS; DATA MANIFOLDS; EUCLIDEAN SPACES; GEOMETRICAL STRUCTURE; GLOBAL CONSISTENCY; GRAPH LAPLACIAN; HIDDEN STRUCTURES; LAPLACE-BELTRAMI OPERATOR; LATENT DIRICHLET ALLOCATIONS; LOCAL MANIFOLD STRUCTURE; MODELING TECHNIQUE; NATURALLY OCCURRING; PROBABILISTIC DISTRIBUTION; PROBABILISTIC FRAMEWORK; PROBABILISTIC LATENT SEMANTIC ANALYSIS; REAL DATA SETS; REAL-WORLD APPLICATION; SOCIAL NETWORK ANALYSIS;

EID: 71149120543     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (151)

References (21)
  • 1
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Cambridge, MA: MIT Press
    • Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in neural information processing systems 14, 585-591. Cambridge, MA: MIT Press.
    • (2001) Advances in neural information processing systems 14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from examples
    • Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from examples. Journal of Machine Learning Research, 7, 2399-2434.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 9
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42, 177-196.
    • (2001) Machine Learning , vol.42 , pp. 177-196
    • Hofmann, T.1
  • 11
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. European conference on machine learning (pp. 137-142).
    • (1998) European conference on machine learning , pp. 137-142
    • Joachims, T.1
  • 12
    • 33749249041 scopus 로고    scopus 로고
    • Pachinko allocation: DAG-structured mixture models of topic correlations
    • Li, W., & McCallum, A. (2006). Pachinko allocation: DAG-structured mixture models of topic correlations. Proc. 2006 Int. Conf. Machine Learning (pp. 577-584).
    • (2006) Proc. 2006 Int. Conf. Machine Learning , pp. 577-584
    • Li, W.1    McCallum, A.2
  • 13
    • 0038363049 scopus 로고
    • North Holland, Budapest: Akadémiai Kiadó
    • Lovasz, L., & Plummer, M. (1986). Matching theory. North Holland, Budapest: Akadémiai Kiadó.
    • (1986) Matching theory
    • Lovasz, L.1    Plummer, M.2
  • 16
    • 0039943513 scopus 로고
    • LSQR: An algorithm for sparse linear equations and sparse least squares
    • Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8, 43-71.
    • (1982) ACM Transactions on Mathematical Software , vol.8 , pp. 43-71
    • Paige, C.C.1    Saunders, M.A.2
  • 18
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 21
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • Bonn, Germany
    • Zhu, X., & Lafferty, J. (2005). Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. ICML '05: Proceedings of the 22nd international conference on Machine learning (pp. 1052-1059). Bonn, Germany.
    • (2005) ICML '05: Proceedings of the 22nd international conference on Machine learning , pp. 1052-1059
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.