메뉴 건너뛰기




Volumn 35, Issue , 2012, Pages 14-20

Hybrid method for the analysis of time series gene expression data

Author keywords

Function approximation; Gene expression; K means clustering; Regression analysis; Time series analysis

Indexed keywords

COMPUTATIONAL CHALLENGES; FUNCTION APPROXIMATION; GENE EXPRESSION DATA; HYBRID METHOD; K-MEANS CLUSTERING; MULTIPLE SEGMENTATION; PIECEWISE POLYNOMIALS; POLYNOMIAL CURVE FITTING; SEGMENTATION DATA; SERIES EXPRESSION; TIME-SERIES DATA; TIME-SERIES GENE EXPRESSION DATA;

EID: 84866484337     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2012.04.003     Document Type: Article
Times cited : (4)

References (39)
  • 1
    • 36949024697 scopus 로고    scopus 로고
    • Temporal causal modeling with graphical granger methods
    • DOI 10.1145/1281192.1281203, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Andrew Arnold, Yan Liu, Naoki Abe, Temporal causal modeling with graphical granger methods, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, August 12-15, 2007, ACM 2007, pp. 66-75. (Pubitemid 350237345)
    • (2007) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 66-75
    • Arnold, A.1    Liu, Y.2    Abe, N.3
  • 2
    • 79952442834 scopus 로고    scopus 로고
    • A class of hybrid morphological perceptrons with application in time series forecasting
    • Ricardo de A. Araújo A class of hybrid morphological perceptrons with application in time series forecasting Knowledge-Based Systems 24 4 2011 513 529
    • (2011) Knowledge-Based Systems , vol.24 , Issue.4 , pp. 513-529
    • Araújo, R.D.A.1
  • 3
    • 77956340248 scopus 로고    scopus 로고
    • Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting
    • E. Hadavandi, H. Shavandi, and A. Ghanbari Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting Knowledge-Based Systems 23 8 2010 800 808
    • (2010) Knowledge-Based Systems , vol.23 , Issue.8 , pp. 800-808
    • Hadavandi, E.1    Shavandi, H.2    Ghanbari, A.3
  • 4
    • 77955419869 scopus 로고    scopus 로고
    • MISMIS - A comprehensive decision support system for stock market investment
    • V. Cho MISMIS - a comprehensive decision support system for stock market investment Knowledge-Based Systems 23 6 2010 626 633
    • (2010) Knowledge-Based Systems , vol.23 , Issue.6 , pp. 626-633
    • Cho, V.1
  • 5
    • 77950857411 scopus 로고    scopus 로고
    • A sliding windows based dual support framework for discovering emerging trends from temporal data
    • M.S. Khan, F. Coenen, D. Reid, R. Patel, and L. Archer A sliding windows based dual support framework for discovering emerging trends from temporal data Knowledge-Based Systems 23 4 2010 316 322
    • (2010) Knowledge-Based Systems , vol.23 , Issue.4 , pp. 316-322
    • Khan, M.S.1    Coenen, F.2    Reid, D.3    Patel, R.4    Archer, L.5
  • 6
    • 84855953395 scopus 로고    scopus 로고
    • A robust automatic phase-adjustment method for financial forecasting
    • R.d.A. Araújo A robust automatic phase-adjustment method for financial forecasting Knowledge-Based Systems 27 2012 245 261
    • (2012) Knowledge-Based Systems , vol.27 , pp. 245-261
    • Araújo, D.R.A.1
  • 7
    • 84857365871 scopus 로고    scopus 로고
    • Finding "interesting" trends in social networks using frequent pattern mining and self organizing maps
    • Puteri N.E. Nohuddin, Frans Coenen, Rob Christley, Christian Setzkorn, Yogesh Patel, and Shane Williams Finding "interesting" trends in social networks using frequent pattern mining and self organizing maps Knowledge-Based Systems 29 2012 104 113
    • (2012) Knowledge-Based Systems , vol.29 , pp. 104-113
    • Nohuddin, P.N.E.1    Coenen, F.2    Christley, R.3    Setzkorn, C.4    Patel, Y.5    Williams, S.6
  • 9
    • 77957994377 scopus 로고    scopus 로고
    • Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming
    • Yi-Shian Lee, and Lee-Ing Tong Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming Knowledge-Based Systems 24 2011 66 72
    • (2011) Knowledge-Based Systems , vol.24 , pp. 66-72
    • Lee, Y.-S.1    Tong, L.-I.2
  • 10
    • 79952440550 scopus 로고    scopus 로고
    • Piecewise cloud approximation for time series mining
    • Hailin Li, and Chonghui Guo Piecewise cloud approximation for time series mining Knowledge-Based Systems 24 2011 492 500
    • (2011) Knowledge-Based Systems , vol.24 , pp. 492-500
    • Li, H.1    Guo, C.2
  • 11
    • 77957993052 scopus 로고    scopus 로고
    • Mining weighted sequential patterns in a sequence database with a time-interval weight
    • Joong Hyuk Chang Mining weighted sequential patterns in a sequence database with a time-interval weight Knowledge-Based Systems 24 2011 1 9
    • (2011) Knowledge-Based Systems , vol.24 , pp. 1-9
    • Chang, J.H.1
  • 12
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • DOI 10.1093/bioinformatics/bth283
    • Ziv Bar-Joseph Analyzing time series gene expression data Bioinformatics 20 16 2004 2493 2503 (Pubitemid 39530134)
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 13
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiment
    • DOI 10.1093/bioinformatics/btl598
    • Nitai D. Mukhopadhyay, and Snigdhansu Chatterjee Causality and pathway search in microarray time series experiment Bioinformatics 23 4 2007 442 449 (Pubitemid 46331215)
    • (2007) Bioinformatics , vol.23 , Issue.4 , pp. 442-449
    • Mukhopadhyay, N.D.1    Chatterjee, S.2
  • 14
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery
    • Aurélie C. Lozano, Naoki Abe, Yan Liu, and Saharon Rosset Grouped graphical Granger modeling for gene expression regulatory networks discovery Bioinformatics 25 12 2009 i110 i118
    • (2009) Bioinformatics , vol.25 , Issue.12
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 15
    • 43449103112 scopus 로고    scopus 로고
    • The effects of structural breaks in ARCH and GARCH parameters on persistence of GARCH models
    • Soosung Hwang, and Pedro L. Valls Pereira The effects of structural breaks in ARCH and GARCH parameters on persistence of GARCH models Communications in Statistics - Simulation and Computation 37 3 2008 571 578
    • (2008) Communications in Statistics - Simulation and Computation , vol.37 , Issue.3 , pp. 571-578
    • Hwang, S.1    Valls Pereira, P.L.2
  • 16
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
    • Robert F. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation Econometrica 50 4 1982 987 1007
    • (1982) Econometrica , vol.50 , Issue.4 , pp. 987-1007
    • Engle, R.F.1
  • 17
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Tim Bollerslev Generalized autoregressive conditional heteroskedasticity Journal of Econometrics 31 1986 307 327
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 18
    • 38849136740 scopus 로고    scopus 로고
    • TimeClust: A clustering tool for gene expression time series
    • DOI 10.1093/bioinformatics/btm605
    • Paolo Magni, Fulvia Ferrazzi, Lucia Sacchi, and Riccardo Bellazzi TimeClust: a clustering tool for gene expression time series Bioinformatics 24 3 2008 430 432 (Pubitemid 351189023)
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 430-432
    • Magni, P.1    Ferrazzi, F.2    Sacchi, L.3    Bellazz, R.4
  • 19
    • 28444499694 scopus 로고    scopus 로고
    • Random walk models for Bayesian clustering of gene expression profiles
    • DOI 10.2165/00822942-200504040-00006
    • Fulvia Ferrazzi, Paolo Magni, and Riccardo Bellazzi Random walk models for Bayesian clustering of gene expression profiles Applied Bioinformatics 4 4 2005 263 276 (14) (Pubitemid 41737128)
    • (2005) Applied Bioinformatics , vol.4 , Issue.4 , pp. 263-276
    • Ferrazzi, F.1    Magni, P.2    Bellazzi, R.3
  • 20
    • 22544433158 scopus 로고    scopus 로고
    • TA-clustering: Cluster analysis of gene expression profiles through Temporal Abstractions
    • DOI 10.1016/j.ijmedinf.2005.03.014, PII S1386505605000535, MedInfo 2004
    • L. Sacchi, R. Bellazzi, C. Larizza, P. Magni, T. Curk, U. Petrovic, and B. Zupan TA-Clustering: cluster analysis of gene expression profiles through temporal abstractions International Journal of Medical Informatics 74 7-8 2005 505 517 (Pubitemid 41021914)
    • (2005) International Journal of Medical Informatics , vol.74 , Issue.7-8 , pp. 505-517
    • Sacchi, L.1    Bellazzi, R.2    Larizza, C.3    Magni, P.4    Curk, T.5    Petrovic, U.6    Zupan, B.7
  • 21
    • 43049175149 scopus 로고    scopus 로고
    • Studies of spectral properties of short genes using the wavelet subspace Hilbert-Huang transform (WSHHT)
    • Rong Jiang, and Hong Yan Studies of spectral properties of short genes using the wavelet subspace Hilbert-Huang transform (WSHHT) Physica A: Statistical Mechanics and its Applications 387 16-17 2008 4223 4247
    • (2008) Physica A: Statistical Mechanics and Its Applications , vol.387 , Issue.1617 , pp. 4223-4247
    • Jiang, R.1    Yan, H.2
  • 22
    • 77951253977 scopus 로고    scopus 로고
    • The theoretic framework of local weighted approximation for microarray missing value estimation
    • Chao-Chun Liu, Dao-Qing Dai, and Hong Yan The theoretic framework of local weighted approximation for microarray missing value estimation Pattern Recognition 43 8 2010 2993 3002
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2993-3002
    • Liu, C.-C.1    Dai, D.-Q.2    Yan, H.3
  • 23
    • 77957019076 scopus 로고    scopus 로고
    • Clustering of temporal gene expression data by regularized spline regression and an energy based similarity measure
    • Wei-Feng Zhang, Chao-Chun Liu, and Hong Yan Clustering of temporal gene expression data by regularized spline regression and an energy based similarity measure Pattern Recognition 43 12 2010 3969 3976
    • (2010) Pattern Recognition , vol.43 , Issue.12 , pp. 3969-3976
    • Zhang, W.-F.1    Liu, C.-C.2    Yan, H.3
  • 24
    • 46249094886 scopus 로고    scopus 로고
    • Alignment and classification of time series gene expression in clinical studies
    • Tien-ho Lin, Naftali Kaminski, and Ziv Bar-Joseph Alignment and classification of time series gene expression in clinical studies Bioinformatics 24 13 2008 i147 i155
    • (2008) Bioinformatics , vol.24 , Issue.13
    • Lin, T.-H.1    Kaminski, N.2    Bar-Joseph, Z.3
  • 25
    • 66349094090 scopus 로고    scopus 로고
    • Clustered alignments of gene-expression time series data
    • Adam A. Smith, Aaron Vollrath, Christopher A. Bradfield, and Mark Craven Clustered alignments of gene-expression time series data Bioinformatics 25 12 2009 i119 i1127
    • (2009) Bioinformatics , vol.25 , Issue.12
    • Smith, A.A.1    Vollrath, A.2    Bradfield, C.A.3    Craven, M.4
  • 26
    • 84866487381 scopus 로고    scopus 로고
    • http://pages.cs.wisc.edu/~aasmith/smith-dissertation.pdf, 2009.
    • (2009)
  • 27
    • 54949112147 scopus 로고    scopus 로고
    • An unsupervised conditional random fields approach for clustering gene expression time series
    • Chang-Tsun Li, Yinyin Yuan, and Roland Wilson An unsupervised conditional random fields approach for clustering gene expression time series Bioinformatics 24 21 2008 2467 2473
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2467-2473
    • Li, C.-T.1    Yuan, Y.2    Wilson, R.3
  • 28
    • 54949136572 scopus 로고    scopus 로고
    • System estimation from metabolic time-series data
    • Gautam Goel, I-Chun Chou, and Eberhard O. Voit System estimation from metabolic time-series data Bioinformatics 24 21 2008 2505 2511
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2505-2511
    • Goel, G.1    Chou, I.-C.2    Voit, E.O.3
  • 29
    • 43349086434 scopus 로고    scopus 로고
    • Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data
    • DOI 10.1093/bioinformatics/btn107
    • Jongrae Kim, Declan G. Bates, Ian Postlethwaite, Pat Heslop-Harrison, and Kwang-Hyun Cho Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data Bioinformatics 24 10 2008 1286 1292 (Pubitemid 351659626)
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1286-1292
    • Kim, J.1    Bates, D.G.2    Postlethwaite, I.3    Heslop-Harrison, P.4    Cho, K.-H.5
  • 30
    • 62549093118 scopus 로고    scopus 로고
    • Benchmarks for identification of ordinary differential equations from time series data
    • Peter Gennemark, and Dag Wedelin Benchmarks for identification of ordinary differential equations from time series data Bioinformatics 25 6 2009 780 786
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 780-786
    • Gennemark, P.1    Wedelin, D.2
  • 31
    • 66349133214 scopus 로고    scopus 로고
    • Constrained mixture estimation for analysis and robust classification of clinical time series
    • Ivan G. Costa, Alexander Schönhuth, Christoph Hafemeister, and Alexander Schliep Constrained mixture estimation for analysis and robust classification of clinical time series Bioinformatics 25 12 2009 i6 i14
    • (2009) Bioinformatics , vol.25 , Issue.12
    • Costa, I.G.1    Schönhuth, A.2    Hafemeister, C.3    Schliep, A.4
  • 32
    • 33846665131 scopus 로고    scopus 로고
    • Merging microarray cell synchronization experiments through curve alignment
    • Filip Hermans, and Elena Tsiporkova Merging microarray cell synchronization experiments through curve alignment Bioinformatics 23 2 2007 e64 e70
    • (2007) Bioinformatics , vol.23 , Issue.2
    • Hermans, F.1    Tsiporkova, E.2
  • 33
    • 41949124936 scopus 로고    scopus 로고
    • Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis
    • DOI 10.1093/bioinformatics/btn072
    • Matthias E. Futschik, and Hanspeter Herzel Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis Bioinformatics 24 8 2008 1063 1069 (Pubitemid 351514056)
    • (2008) Bioinformatics , vol.24 , Issue.8 , pp. 1063-1069
    • Futschik, M.E.1    Herzel, H.2
  • 34
    • 49549089568 scopus 로고    scopus 로고
    • Fusing time series expression data through hybrid aggregation and hierarchical merge
    • Elena Tsiporkova, and Veselka Boeva Fusing time series expression data through hybrid aggregation and hierarchical merge Bioinformatics 24 16 2008 i63 i69
    • (2008) Bioinformatics , vol.24 , Issue.16
    • Tsiporkova, E.1    Boeva, V.2
  • 35
    • 84972496372 scopus 로고
    • Influential observations, high leverage points, and outliers in linear regression
    • S. Chatterjee, and A.S. Hadi Influential observations, high leverage points, and outliers in linear regression Statistical Science 1986 379 416
    • (1986) Statistical Science , pp. 379-416
    • Chatterjee, S.1    Hadi, A.S.2
  • 38
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Paul T. Spellman, Gavin Sherlock, Michael Q. Zhang, Vishwanath R. Iyer, Kirk Anders, Michael B. Eisen, Patrick O. Brown, David Botstein, and Bruce Futcher Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Molecular Biology of the Cell 9 12 1998 3273 3297 (Pubitemid 28551928)
    • (1998) Molecular Biology of the Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 39
    • 84866480947 scopus 로고    scopus 로고
    • http://genome-www.stanford.edu/, 1999.
    • (1999)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.