메뉴 건너뛰기




Volumn 28, Issue 8, 2014, Pages 2109-2128

Improving Flood Forecasting in a Developing Country: A Comparative Study of Stepwise Multiple Linear Regression and Artificial Neural Network

Author keywords

Artificial neural network; Flood forecast; Rainfall; Real time operation; Stepwise regression; Water level

Indexed keywords

DEVELOPING COUNTRIES; FLOOD CONTROL; FORECASTING; NEURAL NETWORKS; RAIN; REAL TIME SYSTEMS; WATER LEVELS;

EID: 84901037108     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-014-0600-8     Document Type: Article
Times cited : (72)

References (37)
  • 1
    • 78651595764 scopus 로고    scopus 로고
    • Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China
    • doi:10.3882/j.issn.1674-2370.2010.03.003
    • Abudu S, Cui C, King JP, Abudukadeer K (2010) Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China. Water Sci Eng 3(3): 269-281. doi: 10. 3882/j. issn. 1674-2370. 2010. 03. 003.
    • (2010) Water Sci Eng , vol.3 , Issue.3 , pp. 269-281
    • Abudu, S.1    Cui, C.2    King, J.P.3    Abudukadeer, K.4
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on application of artificial neural networks in Hydrology
    • ASCE Task Committee on application of artificial neural networks in Hydrology (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on application of artificial neural networks in Hydrology
    • ASCE Task Committee on application of artificial neural networks in Hydrology (2000b) Artificial neural networks in hydrology. II: Hydrologic applications. J Hydrol Eng 5(2): 124-137.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 84901046729 scopus 로고    scopus 로고
    • ASE ASEAN Disaster Risk Management Initiative. World Bank, Association of Southeast Asian Nations (ASEAN), United Nations Office for Disaster Risk Reduction - Regional Office for Asia and Pacific (UNISDR AP), Global Facility for Disaster Reduction and Recovery, the (GFDRR). Accessed 27 Jan 2013
    • ASE ASEAN Disaster Risk Management Initiative (2010) Synthesis report on ten ASEAN countries disaster risks assessment. World Bank, Association of Southeast Asian Nations (ASEAN), United Nations Office for Disaster Risk Reduction - Regional Office for Asia and Pacific (UNISDR AP), Global Facility for Disaster Reduction and Recovery, the (GFDRR). http://www. unisdr. org/files/18872_asean. pdf. Accessed 27 Jan 2013.
    • (2010) Synthesis report on ten ASEAN countries disaster risks assessment
  • 6
    • 0034028703 scopus 로고    scopus 로고
    • Flood disasters: lessons from the past-worries for the future
    • Berz G (2000) Flood disasters: lessons from the past-worries for the future. Proceeding of the ICE. Water Marit Eng 142(1): 3-8.
    • (2000) Proceeding of the ICE. Water Marit Eng , vol.142 , Issue.1 , pp. 3-8
    • Berz, G.1
  • 7
    • 84857306667 scopus 로고    scopus 로고
    • ANN based river stage-discharge modeling for Godavari River, India
    • Bisht DCS, Raju MM, Joshi MC (2010) ANN based river stage-discharge modeling for Godavari River, India. Comput Model New Technol 14(3): 48-62.
    • (2010) Comput Model New Technol , vol.14 , Issue.3 , pp. 48-62
    • Bisht, D.C.S.1    Raju, M.M.2    Joshi, M.C.3
  • 8
    • 33846807570 scopus 로고    scopus 로고
    • Multi-step-ahead neural networks for flood forecasting
    • Chang F, Chiang Y, Chang L (2007) Multi-step-ahead neural networks for flood forecasting. Hydrol Sci 52(1): 114-130.
    • (2007) Hydrol Sci , vol.52 , Issue.1 , pp. 114-130
    • Chang, F.1    Chiang, Y.2    Chang, L.3
  • 9
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu HK (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol Sci 48(3): 349-361.
    • (2003) Hydrol Sci , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 10
    • 17444403520 scopus 로고    scopus 로고
    • An Application of pruning in the design of neural networks for real time Flood Forecasting
    • Corani G, Guariso G (2005) An Application of pruning in the design of neural networks for real time Flood Forecasting. Neural Comput Appl 14: 66-77.
    • (2005) Neural Comput Appl , vol.14 , pp. 66-77
    • Corani, G.1    Guariso, G.2
  • 11
    • 79959804261 scopus 로고    scopus 로고
    • Stream flow modeling of River Swat using regressions and artificial neural networks (ANNs) techniques
    • doi:10.4028
    • Daud S, Shahzada K, Tufail M, Fahad M (2011) Stream flow modeling of River Swat using regressions and artificial neural networks (ANNs) techniques. Adv Mater Res 225-260: 679-683. doi: 10. 4028/www. scientific. net/AMR. 255-260. 679.
    • (2011) Adv Mater Res , vol.225 , Issue.260 , pp. 679-683
    • Daud, S.1    Shahzada, K.2    Tufail, M.3    Fahad, M.4
  • 12
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson CW, Wilby RL (1999) A comparison of artificial neural networks used for river flow forecasting. Hydrol Earth Syst Sci 3(4): 529-540.
    • (1999) Hydrol Earth Syst Sci , vol.3 , Issue.4 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 13
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1): 80-108.
    • (2001) Prog Phys Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
    • Dawson CW, Harpham C, Wilby RL, Chen Y (2002) Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China. Hydrol Earth Syst Sci 6(4): 619-626.
    • (2002) Hydrol Earth Syst Sci , vol.6 , Issue.4 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 16
    • 84864023133 scopus 로고    scopus 로고
    • Normality tests for statistical analysis: a guide for Non-statisticians
    • Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for Non-statisticians. Int J Endocrinol Metab 10(2): 486-489.
    • (2012) Int J Endocrinol Metab , vol.10 , Issue.2 , pp. 486-489
    • Ghasemi, A.1    Zahediasl, S.2
  • 20
    • 78149450797 scopus 로고    scopus 로고
    • Improving flood forecasting in Bangladesh using an artificial neural network
    • Islam AS (2010) Improving flood forecasting in Bangladesh using an artificial neural network. IWA J Hydroinformatics 12(3): 351-364.
    • (2010) IWA J Hydroinformatics , vol.12 , Issue.3 , pp. 351-364
    • Islam, A.S.1
  • 21
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12(5): 532-539.
    • (2007) J Hydrol Eng , vol.12 , Issue.5 , pp. 532-539
    • Kisi, Ö.1
  • 23
    • 84555208766 scopus 로고    scopus 로고
    • Intermittent reservoir daily-inflow prediction using lumped and distributed data multi-liner regression models
    • Magar RB, Jothiprakash V (2011) Intermittent reservoir daily-inflow prediction using lumped and distributed data multi-liner regression models. J Earth Syst Sci 120(6): 1067-1084.
    • (2011) J Earth Syst Sci , vol.120 , Issue.6 , pp. 1067-1084
    • Magar, R.B.1    Jothiprakash, V.2
  • 24
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci 41(3): 399-417.
    • (1996) Hydrol Sci , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 25
    • 80053943536 scopus 로고    scopus 로고
    • Reservoir inflow forecasting using artificial neural work
    • Othman F, Naseri M (2011) Reservoir inflow forecasting using artificial neural work. Int J Phys Sci 6(3): 434-440.
    • (2011) Int J Phys Sci , vol.6 , Issue.3 , pp. 434-440
    • Othman, F.1    Naseri, M.2
  • 26
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modeling
    • Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall-runoff modeling. Hydrol Sci 47(6): 865-877.
    • (2002) Hydrol Sci , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 27
    • 84902475668 scopus 로고    scopus 로고
    • Flood flow forecasting using ANN. ANFIS and regression models
    • doi:10.1007/s00521-013-1443-6
    • Rezaeianzadeh M et al (2013) Flood flow forecasting using ANN. ANFIS and regression models. Neural Comput Appl. doi: 10. 1007/s00521-013-1443-6.
    • (2013) Neural Comput Appl
    • Rezaeianzadeh, M.1
  • 28
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Cambridge: MIT Press
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Parallel distributed processing, vol 1. MIT Press, Cambridge, pp 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 29
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216: 32-55.
    • (1999) J Hydrol , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 30
    • 4344637231 scopus 로고    scopus 로고
    • Application of remote sensing in flood management with special reference to monsoon Asia: a review
    • Sanyal J, Lu XX (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat Hazards 33: 283-301.
    • (2004) Nat Hazards , vol.33 , pp. 283-301
    • Sanyal, J.1    Lu, X.X.2
  • 31
    • 84864109362 scopus 로고    scopus 로고
    • Flow estimations for the Sohu stream using artificial neural networks
    • Sattari NT, Apaydin H, Ozturk F (2012) Flow estimations for the Sohu stream using artificial neural networks. Environ Earth Sci 66(7): 2031-2045.
    • (2012) Environ Earth Sci , vol.66 , Issue.7 , pp. 2031-2045
    • Sattari, N.T.1    Apaydin, H.2    Ozturk, F.3
  • 32
    • 84901059796 scopus 로고    scopus 로고
    • Inflow prediction by different neural network architectures: a case study
    • Sentu D, Regulwar DG (2011) Inflow prediction by different neural network architectures: a case study. Int J Earth Sci Eng 4(6): 225-230.
    • (2011) Int J Earth Sci Eng , vol.4 , Issue.6 , pp. 225-230
    • Sentu, D.1    Regulwar, D.G.2
  • 33
    • 75149184952 scopus 로고    scopus 로고
    • Artificial neural network model for river flow forecasting in a developing country
    • Shamseldin AY (2010) Artificial neural network model for river flow forecasting in a developing country. IWA J Hydroinformatics 12(1): 22-34.
    • (2010) IWA J Hydroinformatics , vol.12 , Issue.1 , pp. 22-34
    • Shamseldin, A.Y.1
  • 34
    • 36849063708 scopus 로고    scopus 로고
    • Application of fuzzy systems and artificial neural networks for flood forecasting
    • Tareghian R, Kashefipour SM (2007) Application of fuzzy systems and artificial neural networks for flood forecasting. J Appl Sci 7(22): 3451-3459.
    • (2007) J Appl Sci , vol.7 , Issue.22 , pp. 3451-3459
    • Tareghian, R.1    Kashefipour, S.M.2
  • 37
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu CL, Chau KW, Li YS (2008) River stage prediction based on a distributed support vector regression. J Hydrol 358: 96-111.
    • (2008) J Hydrol , vol.358 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.