메뉴 건너뛰기




Volumn 139, Issue , 2014, Pages 345-356

A kernel-based sparsity preserving method for semi-supervised classification

Author keywords

Feature extraction; Manifold regularization; Semi supervised classification; Semi supervised learning; Sparse representation

Indexed keywords

COST FUNCTIONS; FEATURE EXTRACTION;

EID: 84900868508     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.022     Document Type: Article
Times cited : (17)

References (34)
  • 1
    • 39549089484 scopus 로고    scopus 로고
    • Semi-supervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
    • Fujino A., Ueda N., Saito K. Semi-supervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30(3):424-437.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.3 , pp. 424-437
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 2
    • 62249193672 scopus 로고    scopus 로고
    • Semi-supervised learning of hidden Markov models via a homotopy method
    • Ji S.H., Watson L.T., Carin L. Semi-supervised learning of hidden Markov models via a homotopy method. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(2):275-287.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.2 , pp. 275-287
    • Ji, S.H.1    Watson, L.T.2    Carin, L.3
  • 3
    • 78649321657 scopus 로고    scopus 로고
    • A self-trained ensemble with semisupervised SVM. an application to pixel classification of remote sensing imagery
    • Maulik U., Chakraborty D. A self-trained ensemble with semisupervised SVM. an application to pixel classification of remote sensing imagery. Pattern Recognit. 2011, 44(3):615-623.
    • (2011) Pattern Recognit. , vol.44 , Issue.3 , pp. 615-623
    • Maulik, U.1    Chakraborty, D.2
  • 4
    • 43249086679 scopus 로고    scopus 로고
    • A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
    • Li Y., Guan C., Li H., et al. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognit. Lett. 2008, 29(9):1285-1294.
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.9 , pp. 1285-1294
    • Li, Y.1    Guan, C.2    Li, H.3
  • 5
    • 36249007597 scopus 로고    scopus 로고
    • Learning techniques using undiagnosed samples
    • Li M., Zhou Z.H. Learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. Part A 2007, 37(6):1088-1098.
    • (2007) IEEE Trans. Syst. Man Cybern. Part A , vol.37 , Issue.6 , pp. 1088-1098
    • Li, M.1    Zhou, Z.H.2
  • 6
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Chapelle O., Sindhwani V., Keerthi S.S. Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 2008, 9:203-233.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 12
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization. a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Sindhwani V., Niyogi P. Manifold regularization. a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Sindhwani, V.2    Niyogi, P.3
  • 13
    • 84900852524 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey, Technical Report 1530, Computer Science Department
    • X. Zhu, Semi-Supervised Learning Literature Survey, Technical Report 1530, Computer Science Department, University of Wisconsin, 2006.
    • (2006) University of Wisconsin
    • Zhu, X.1
  • 14
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Bruckstein A.M., Donoho D.L., Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 2009, 51(1):34-81.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 15
    • 0037418225 scopus 로고    scopus 로고
    • Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
    • D.L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization, Proc. Natl. Acad. Sci. 100 (5) (2003) 2197-2202.
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , Issue.5 , pp. 2197-2202
    • Donoho, D.L.1    Elad, M.2
  • 16
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition, Proc
    • J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, S. Yan, Sparse representation for computer vision and pattern recognition, Proc. IEEE 98 (2010) 1031-1044.
    • (2010) IEEE , vol.98 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.5    Yan, S.6
  • 18
    • 79953034462 scopus 로고    scopus 로고
    • Sparse regularization for semi-supervised classification
    • Fan M., Gu N., Qiao H., Zhang B. Sparse regularization for semi-supervised classification. Pattern Recognit. 2011, 44:1777-1784.
    • (2011) Pattern Recognit. , vol.44 , pp. 1777-1784
    • Fan, M.1    Gu, N.2    Qiao, H.3    Zhang, B.4
  • 19
    • 69049112203 scopus 로고    scopus 로고
    • Sparsity preserving projections with applications to face recognition
    • Qiao L., Chen S., Tan X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010, 43:331-341.
    • (2010) Pattern Recognit. , vol.43 , pp. 331-341
    • Qiao, L.1    Chen, S.2    Tan, X.3
  • 20
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • Donoho D.L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 2006, 59:797-829.
    • (2006) Commun. Pure Appl. Math. , vol.59 , pp. 797-829
    • Donoho, D.L.1
  • 21
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • Candès E., Romberg J., Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59:1207-1223.
    • (2006) Commun. Pure Appl. Math. , vol.59 , pp. 1207-1223
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 22
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: universal encoding strategies?
    • Candès E., Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 2006, 52:5406-5425.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 5406-5425
    • Candès, E.1    Tao, T.2
  • 24
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • Becker S., Candès E.J., Grant M. Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 2010, 3(3):165-218.
    • (2010) Math. Program. Comput. , vol.3 , Issue.3 , pp. 165-218
    • Becker, S.1    Candès, E.J.2    Grant, M.3
  • 26
    • 84876871136 scopus 로고    scopus 로고
    • Unsupervised multiple kernel learning
    • Proceedings Track).
    • J. Zhuang, J. Wang, S.C. Hoi, X. Lan, Unsupervised multiple kernel learning, J. Mach. Learn. Res. 20 (2011) 129-144 (Proceedings Track).
    • (2011) J. Mach. Learn. Res , vol.20 , pp. 129-144
    • Zhuang, J.1    Wang, J.2    Hoi, S.C.3    Lan, X.4
  • 27
    • 79955830804 scopus 로고    scopus 로고
    • A family of simple non-parametric kernel learning algorithms
    • Zhuang J., Tsang I.W., Hoi S.C. A family of simple non-parametric kernel learning algorithms. J. Mach. Learn. Res. 2011, 12:1313-1347.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1313-1347
    • Zhuang, J.1    Tsang, I.W.2    Hoi, S.C.3
  • 29
    • 80955131778 scopus 로고    scopus 로고
    • Kernel sparse representation based classification
    • Yin J., Liu Z., Jin Z., Yang W. Kernel sparse representation based classification. Neurocomputing 2012, 77(1):120-128.
    • (2012) Neurocomputing , vol.77 , Issue.1 , pp. 120-128
    • Yin, J.1    Liu, Z.2    Jin, Z.3    Yang, W.4
  • 30
    • 0028428774 scopus 로고    scopus 로고
    • A database for handwritten text recognition research
    • Hull J.J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 16(5):550-554.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.16 , Issue.5 , pp. 550-554
    • Hull, J.J.1
  • 32
    • 40349102103 scopus 로고    scopus 로고
    • A low-cost pedestrian-detection system with a single optical camera
    • Cao X., Qiao H., Keane J. A low-cost pedestrian-detection system with a single optical camera. IEEE Trans. Intell. Transp. Syst. 2008, 9(1):58-67.
    • (2008) IEEE Trans. Intell. Transp. Syst. , vol.9 , Issue.1 , pp. 58-67
    • Cao, X.1    Qiao, H.2    Keane, J.3
  • 33
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 2002, 13(2):415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.