-
1
-
-
39549089484
-
Semi-supervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
-
Fujino A., Ueda N., Saito K. Semi-supervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30(3):424-437.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.3
, pp. 424-437
-
-
Fujino, A.1
Ueda, N.2
Saito, K.3
-
2
-
-
62249193672
-
Semi-supervised learning of hidden Markov models via a homotopy method
-
Ji S.H., Watson L.T., Carin L. Semi-supervised learning of hidden Markov models via a homotopy method. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(2):275-287.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 275-287
-
-
Ji, S.H.1
Watson, L.T.2
Carin, L.3
-
3
-
-
78649321657
-
A self-trained ensemble with semisupervised SVM. an application to pixel classification of remote sensing imagery
-
Maulik U., Chakraborty D. A self-trained ensemble with semisupervised SVM. an application to pixel classification of remote sensing imagery. Pattern Recognit. 2011, 44(3):615-623.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.3
, pp. 615-623
-
-
Maulik, U.1
Chakraborty, D.2
-
4
-
-
43249086679
-
A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
-
Li Y., Guan C., Li H., et al. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognit. Lett. 2008, 29(9):1285-1294.
-
(2008)
Pattern Recognit. Lett.
, vol.29
, Issue.9
, pp. 1285-1294
-
-
Li, Y.1
Guan, C.2
Li, H.3
-
5
-
-
36249007597
-
Learning techniques using undiagnosed samples
-
Li M., Zhou Z.H. Learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. Part A 2007, 37(6):1088-1098.
-
(2007)
IEEE Trans. Syst. Man Cybern. Part A
, vol.37
, Issue.6
, pp. 1088-1098
-
-
Li, M.1
Zhou, Z.H.2
-
6
-
-
41549144249
-
Optimization techniques for semi-supervised support vector machines
-
Chapelle O., Sindhwani V., Keerthi S.S. Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 2008, 9:203-233.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
7
-
-
84864069202
-
Branch and bound for semi-supervised support vector machines
-
O. Chapelle, V. Sindhwani, S.S. Keerthi, Branch and bound for semi-supervised support vector machines, in: Proceedings of the Advances in Neural Information Processing Systems, Cambridge, MA, 2007, pp. 217-224.
-
(2007)
Proceedings of the Advances in Neural Information Processing Systems, Cambridge, MA
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
8
-
-
50649084677
-
Cluster kernels for semisupervised learning
-
O. Chapelle, J. Weston, B. Schökopf, Cluster kernels for semisupervised learning, in: Proceedings of the Neural Information Processing Systems Conference (NIPS 2003), 2003, pp. 585-592.
-
(2003)
Proceedings of the Neural Information Processing Systems Conference (NIPS 2003)
, pp. 585-592
-
-
Chapelle, O.1
Weston, J.2
Schökopf, B.3
-
10
-
-
26444592207
-
Learning from Labeled and Unlabeled Data with Label Propagation, Technical Report CMUCALD-02-107
-
X. Zhu, Z. Ghahramani, Learning from Labeled and Unlabeled Data with Label Propagation, Technical Report CMUCALD-02-107, Computer Science Department, Carnegie Mellon University, 2002.
-
(2002)
Computer Science Department, Carnegie Mellon University
-
-
Zhu, X.1
Ghahramani, Z.2
-
11
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. Lal, J. Weston, B. Schökopf, Learning with local and global consistency, in: Proceedings of the Neural Information Processing Systems Conference (NIPS 2004), 2004.
-
(2004)
Proceedings of the Neural Information Processing Systems Conference (NIPS 2004)
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.3
Weston, J.4
Schökopf, B.5
-
12
-
-
33750729556
-
Manifold regularization. a geometric framework for learning from labeled and unlabeled examples
-
Belkin M., Sindhwani V., Niyogi P. Manifold regularization. a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Sindhwani, V.2
Niyogi, P.3
-
13
-
-
84900852524
-
Semi-Supervised Learning Literature Survey, Technical Report 1530, Computer Science Department
-
X. Zhu, Semi-Supervised Learning Literature Survey, Technical Report 1530, Computer Science Department, University of Wisconsin, 2006.
-
(2006)
University of Wisconsin
-
-
Zhu, X.1
-
14
-
-
59749104367
-
From sparse solutions of systems of equations to sparse modeling of signals and images
-
Bruckstein A.M., Donoho D.L., Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 2009, 51(1):34-81.
-
(2009)
SIAM Rev.
, vol.51
, Issue.1
, pp. 34-81
-
-
Bruckstein, A.M.1
Donoho, D.L.2
Elad, M.3
-
15
-
-
0037418225
-
Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
-
D.L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization, Proc. Natl. Acad. Sci. 100 (5) (2003) 2197-2202.
-
(2003)
Proc. Natl. Acad. Sci.
, vol.100
, Issue.5
, pp. 2197-2202
-
-
Donoho, D.L.1
Elad, M.2
-
16
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition, Proc
-
J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, S. Yan, Sparse representation for computer vision and pattern recognition, Proc. IEEE 98 (2010) 1031-1044.
-
(2010)
IEEE
, vol.98
, pp. 1031-1044
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.5
Yan, S.6
-
17
-
-
61549128441
-
Robust face recognition via sparse representation
-
Wright J., Yang A., Ganesh A., Sastry S.S., Ma Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(2):210-227.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
Yang, A.2
Ganesh, A.3
Sastry, S.S.4
Ma, Y.5
-
18
-
-
79953034462
-
Sparse regularization for semi-supervised classification
-
Fan M., Gu N., Qiao H., Zhang B. Sparse regularization for semi-supervised classification. Pattern Recognit. 2011, 44:1777-1784.
-
(2011)
Pattern Recognit.
, vol.44
, pp. 1777-1784
-
-
Fan, M.1
Gu, N.2
Qiao, H.3
Zhang, B.4
-
19
-
-
69049112203
-
Sparsity preserving projections with applications to face recognition
-
Qiao L., Chen S., Tan X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010, 43:331-341.
-
(2010)
Pattern Recognit.
, vol.43
, pp. 331-341
-
-
Qiao, L.1
Chen, S.2
Tan, X.3
-
20
-
-
33646365077
-
For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
-
Donoho D.L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 2006, 59:797-829.
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, pp. 797-829
-
-
Donoho, D.L.1
-
21
-
-
33745604236
-
Stable signal recovery from incomplete and inaccurate measurements
-
Candès E., Romberg J., Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59:1207-1223.
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, pp. 1207-1223
-
-
Candès, E.1
Romberg, J.2
Tao, T.3
-
22
-
-
33947416035
-
Near-optimal signal recovery from random projections: universal encoding strategies?
-
Candès E., Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 2006, 52:5406-5425.
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, pp. 5406-5425
-
-
Candès, E.1
Tao, T.2
-
23
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Muller K., Mika S., Riitsch G., Tsuda K., Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12:181-201.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, pp. 181-201
-
-
Muller, K.1
Mika, S.2
Riitsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
24
-
-
84856004485
-
Templates for convex cone problems with applications to sparse signal recovery
-
Becker S., Candès E.J., Grant M. Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 2010, 3(3):165-218.
-
(2010)
Math. Program. Comput.
, vol.3
, Issue.3
, pp. 165-218
-
-
Becker, S.1
Candès, E.J.2
Grant, M.3
-
26
-
-
84876871136
-
Unsupervised multiple kernel learning
-
Proceedings Track).
-
J. Zhuang, J. Wang, S.C. Hoi, X. Lan, Unsupervised multiple kernel learning, J. Mach. Learn. Res. 20 (2011) 129-144 (Proceedings Track).
-
(2011)
J. Mach. Learn. Res
, vol.20
, pp. 129-144
-
-
Zhuang, J.1
Wang, J.2
Hoi, S.C.3
Lan, X.4
-
27
-
-
79955830804
-
A family of simple non-parametric kernel learning algorithms
-
Zhuang J., Tsang I.W., Hoi S.C. A family of simple non-parametric kernel learning algorithms. J. Mach. Learn. Res. 2011, 12:1313-1347.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1313-1347
-
-
Zhuang, J.1
Tsang, I.W.2
Hoi, S.C.3
-
29
-
-
80955131778
-
Kernel sparse representation based classification
-
Yin J., Liu Z., Jin Z., Yang W. Kernel sparse representation based classification. Neurocomputing 2012, 77(1):120-128.
-
(2012)
Neurocomputing
, vol.77
, Issue.1
, pp. 120-128
-
-
Yin, J.1
Liu, Z.2
Jin, Z.3
Yang, W.4
-
30
-
-
0028428774
-
A database for handwritten text recognition research
-
Hull J.J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 16(5):550-554.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.16
, Issue.5
, pp. 550-554
-
-
Hull, J.J.1
-
32
-
-
40349102103
-
A low-cost pedestrian-detection system with a single optical camera
-
Cao X., Qiao H., Keane J. A low-cost pedestrian-detection system with a single optical camera. IEEE Trans. Intell. Transp. Syst. 2008, 9(1):58-67.
-
(2008)
IEEE Trans. Intell. Transp. Syst.
, vol.9
, Issue.1
, pp. 58-67
-
-
Cao, X.1
Qiao, H.2
Keane, J.3
-
33
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Hsu C.W., Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 2002, 13(2):415-425.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
|