메뉴 건너뛰기




Volumn 9, Issue 5, 2014, Pages

A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging

Author keywords

[No Author keywords available]

Indexed keywords

FLUORESCENT DYE; FRACTALKINE; PROTEIN CDC42;

EID: 84900425523     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0096469     Document Type: Article
Times cited : (41)

References (40)
  • 1
    • 0033007293 scopus 로고    scopus 로고
    • Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity
    • Johnson DI (1999) Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63: 54-105.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 54-105
    • Johnson, D.I.1
  • 3
    • 1442274703 scopus 로고    scopus 로고
    • Cdc42: New roads to travel
    • Cerione RA (2004) Cdc42: new roads to travel. Trends Cell Biol 14: 127-132.
    • (2004) Trends Cell Biol , vol.14 , pp. 127-132
    • Cerione, R.A.1
  • 4
    • 79958772180 scopus 로고    scopus 로고
    • Cdc42 in oncogenic transformation, invasion, and tumorigenesis
    • Stengel K, Zheng Y (2011) Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 23: 1415-1423.
    • (2011) Cell Signal , vol.23 , pp. 1415-1423
    • Stengel, K.1    Zheng, Y.2
  • 5
    • 2342418629 scopus 로고    scopus 로고
    • Rho-family GTPases: It's not only Rac and Rho (and i like it)
    • DOI 10.1242/jcs.01118
    • Wennerberg K, Der CJ (2004) Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci 117: 1301-1312. (Pubitemid 38559808)
    • (2004) Journal of Cell Science , vol.117 , Issue.8 , pp. 1301-1312
    • Wennerberg, K.1    Der, C.J.2
  • 6
    • 4644266043 scopus 로고    scopus 로고
    • Activation of endogenous Cdc42 visualized in living cells
    • DOI 10.1126/science.1100367
    • Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM (2004) Activation of endogenous Cdc42 visualized in living cells. Science 305: 1615-1619. (Pubitemid 39296355)
    • (2004) Science , vol.305 , Issue.5690 , pp. 1615-1619
    • Nalbant, P.1    Hodgson, L.2    Kraynov, V.3    Toutchkine, A.4    Hahn, K.M.5
  • 7
    • 32144456185 scopus 로고    scopus 로고
    • Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation
    • DOI 10.1016/S0076-6879(06)06012-5, PII S0076687906060125, 12, Regulators and Effectors of Small GTPases: Rho Family
    • Hodgson L, Nalbant P, Shen F, Hahn K (2006) Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation. Methods Enzymol 406: 140-156. (Pubitemid 43207438)
    • (2006) Methods in Enzymology , vol.406 , pp. 140-156
    • Hodgson, L.1    Nalbant, P.2    Shen, F.3    Hahn, K.4
  • 8
    • 0037446762 scopus 로고    scopus 로고
    • Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling
    • DOI 10.1021/bi026881z
    • Seth A, Otomo T, Yin HL, Rosen MK (2003) Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling. Biochemistry 42: 3997-4008. (Pubitemid 36418292)
    • (2003) Biochemistry , vol.42 , Issue.14 , pp. 3997-4008
    • Seth, A.1    Otomo, T.2    Yin, H.L.3    Rosen, M.K.4
  • 9
    • 0036724188 scopus 로고    scopus 로고
    • Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells
    • Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, et al. (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22: 6582-6591.
    • (2002) Mol Cell Biol , vol.22 , pp. 6582-6591
    • Itoh, R.E.1    Kurokawa, K.2    Ohba, Y.3    Yoshizaki, H.4    Mochizuki, N.5
  • 10
    • 54449089270 scopus 로고    scopus 로고
    • Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification
    • Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, et al. (2008) Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283: 25150-25163.
    • (2008) J Biol Chem , vol.283 , pp. 25150-25163
    • Roberts, P.J.1    Mitin, N.2    Keller, P.J.3    Chenette, E.J.4    Madigan, J.P.5
  • 11
    • 69949185998 scopus 로고    scopus 로고
    • Coordination of Rho GTPase activities during cell protrusion
    • Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, et al. (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461: 99-103.
    • (2009) Nature , vol.461 , pp. 99-103
    • Machacek, M.1    Hodgson, L.2    Welch, C.3    Elliott, H.4    Pertz, O.5
  • 13
    • 37249008219 scopus 로고    scopus 로고
    • Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors
    • Hodgson L, Pertz O, Hahn KM (2008) Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors. Methods Cell Biol 85: 63-81.
    • (2008) Methods Cell Biol , vol.85 , pp. 63-81
    • Hodgson, L.1    Pertz, O.2    Hahn, K.M.3
  • 14
    • 33646197411 scopus 로고    scopus 로고
    • Spatiotemporal dynamics of RhoA activity in migrating cells
    • Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440: 1069-1072.
    • (2006) Nature , vol.440 , pp. 1069-1072
    • Pertz, O.1    Hodgson, L.2    Klemke, R.L.3    Hahn, K.M.4
  • 15
    • 84880903228 scopus 로고    scopus 로고
    • A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space
    • Fritz RD, Letzelter M, Reimann A, Martin K, Fusco L, et al. (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6: rs12.
    • (2013) Sci Signal , vol.6
    • Fritz, R.D.1    Letzelter, M.2    Reimann, A.3    Martin, K.4    Fusco, L.5
  • 16
    • 0035825193 scopus 로고    scopus 로고
    • Differential localization of Rho GTPases in live cells: Regulation by hypervariable regions and RhoGDI binding
    • DOI 10.1083/jcb.152.1.111
    • Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, et al. (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152: 111-126. (Pubitemid 32102441)
    • (2001) Journal of Cell Biology , vol.152 , Issue.1 , pp. 111-126
    • Michaelson, D.1    Silletti, J.2    Murphy, G.3    D'Eustachio, P.4    Rush, M.5    Philips, M.R.6
  • 17
    • 79960706295 scopus 로고    scopus 로고
    • The 'invisible hand': Regulation of RHO GTPases by RHOGDIs
    • Garcia-Mata R, Boulter E, Burridge K (2011) The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12: 493-504.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 493-504
    • Garcia-Mata, R.1    Boulter, E.2    Burridge, K.3
  • 18
    • 77951974893 scopus 로고    scopus 로고
    • Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1
    • Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, et al. (2010) Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12: 477-483.
    • (2010) Nat Cell Biol , vol.12 , pp. 477-483
    • Boulter, E.1    Garcia-Mata, R.2    Guilluy, C.3    Dubash, A.4    Rossi, G.5
  • 19
    • 0033081753 scopus 로고    scopus 로고
    • Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton
    • DOI 10.1093/emboj/18.3.578
    • Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO Journal 18: 578-585. (Pubitemid 29057242)
    • (1999) EMBO Journal , vol.18 , Issue.3 , pp. 578-585
    • Ren, X.-D.1    Kiosses, W.B.2    Schwartz, M.A.3
  • 20
    • 77949642160 scopus 로고    scopus 로고
    • Biosensors for characterizing the dynamics of rho family GTPases in living cells
    • Chapter 14: Unit 14 11
    • Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol Chapter 14: Unit 14 11 11-26.
    • (2010) Curr Protoc Cell Biol , pp. 11-26
    • Hodgson, L.1    Shen, F.2    Hahn, K.3
  • 21
    • 84892419336 scopus 로고    scopus 로고
    • A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells
    • In Press
    • Zawistowski J, Sabouri-Ghomi M, Danuser G, Hahn K, Hodgson L (2013) A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells. Plos One In Press.
    • (2013) Plos One
    • Zawistowski, J.1    Sabouri-Ghomi, M.2    Danuser, G.3    Hahn, K.4    Hodgson, L.5
  • 22
    • 73949143369 scopus 로고    scopus 로고
    • Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP
    • Park H, Cox D (2009) Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell 20: 4500-4508.
    • (2009) Mol Biol Cell , vol.20 , pp. 4500-4508
    • Park, H.1    Cox, D.2
  • 23
    • 70450236976 scopus 로고    scopus 로고
    • Regulation of podosome dynamics by WASp phosphorylation: Implication in matrix degradation and chemotaxis in macrophages
    • Dovas A, Gevrey JC, Grossi A, Park H, Abou-Kheir W, et al. (2009) Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. J Cell Sci 122: 3873-3882.
    • (2009) J Cell Sci , vol.122 , pp. 3873-3882
    • Dovas, A.1    Gevrey, J.C.2    Grossi, A.3    Park, H.4    Abou-Kheir, W.5
  • 24
    • 79955449327 scopus 로고    scopus 로고
    • Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages
    • Park H, Cox D (2011) Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages. J Biol Chem.
    • (2011) J Biol Chem
    • Park, H.1    Cox, D.2
  • 25
    • 0030684003 scopus 로고    scopus 로고
    • Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes
    • DOI 10.1084/jem.186.9.1487
    • Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, et al. (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186: 1487-1494. (Pubitemid 27479808)
    • (1997) Journal of Experimental Medicine , vol.186 , Issue.9 , pp. 1487-1494
    • Cox, D.1    Chang, P.2    Zhang, Q.3    Reddy, P.G.4    Bokoch, G.M.5    Greenberg, S.6
  • 26
    • 79955382689 scopus 로고    scopus 로고
    • Fractalkine/CX3CR1 and atherosclerosis
    • Liu H, Jiang D (2011) Fractalkine/CX3CR1 and atherosclerosis. Clin Chim Acta 412: 1180-1186.
    • (2011) Clin Chim Acta , vol.412 , pp. 1180-1186
    • Liu, H.1    Jiang, D.2
  • 27
    • 3342938063 scopus 로고    scopus 로고
    • Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis
    • DOI 10.1091/mbc.E03-11-0847
    • Hoppe AD, Swanson JA (2004) Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15: 3509-3519. (Pubitemid 38989692)
    • (2004) Molecular Biology of the Cell , vol.15 , Issue.8 , pp. 3509-3519
    • Hoppe, A.D.1    Swanson, J.A.2
  • 28
    • 84934437503 scopus 로고    scopus 로고
    • Podosome reformation in macrophages: Assays and analysis
    • Cervero P, Panzer L, Linder S (2013) Podosome reformation in macrophages: assays and analysis. Methods Mol Biol 1046: 97-121.
    • (2013) Methods Mol Biol , vol.1046 , pp. 97-121
    • Cervero, P.1    Panzer, L.2    Linder, S.3
  • 30
    • 69949155572 scopus 로고    scopus 로고
    • The mechanism of CSF-1-induced Wiskott-Aldrich syndrome protein activation in vivo: A role for phosphatidylinositol 3-kinase and Cdc42
    • Cammer M, Gevrey JC, Lorenz M, Dovas A, Condeelis J, et al. (2009) The mechanism of CSF-1-induced Wiskott-Aldrich syndrome protein activation in vivo: a role for phosphatidylinositol 3-kinase and Cdc42. J Biol Chem 284: 23302-23311.
    • (2009) J Biol Chem , vol.284 , pp. 23302-23311
    • Cammer, M.1    Gevrey, J.C.2    Lorenz, M.3    Dovas, A.4    Condeelis, J.5
  • 31
    • 70349466839 scopus 로고    scopus 로고
    • Phosphorylation of WASp is a key regulator of activity and stability in vivo
    • Blundell MP, Bouma G, Metelo J, Worth A, Calle Y, et al. (2009) Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc Natl Acad Sci U S A 106: 15738-15743.
    • (2009) Proc Natl Acad Sci U S a , vol.106 , pp. 15738-15743
    • Blundell, M.P.1    Bouma, G.2    Metelo, J.3    Worth, A.4    Calle, Y.5
  • 32
    • 0042232206 scopus 로고    scopus 로고
    • Localized Cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress
    • DOI 10.1074/jbc.M301179200
    • Tzima E, Kiosses WB, del Pozo MA, Schwartz MA (2003) Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J Biol Chem 278: 31020-31023. (Pubitemid 36994615)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.33 , pp. 31020-31023
    • Tzima, E.1    Kiosses, W.B.2    Del, P.M.A.3    Schwartz, M.A.4
  • 33
    • 79955449327 scopus 로고    scopus 로고
    • Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages
    • Park H, Cox D (2011) Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages. J Biol Chem 286: 14762-14769.
    • (2011) J Biol Chem , vol.286 , pp. 14762-14769
    • Park, H.1    Cox, D.2
  • 34
    • 84922480738 scopus 로고    scopus 로고
    • A mix-and-measure assay for determining the activation status of endogenous Cdc42 in cytokine-stimulated macrophage cell lysates
    • In Press
    • Miskolci V, Spiering D, Cox D, Hodgson L (2013) A mix-and-measure assay for determining the activation status of endogenous Cdc42 in cytokine-stimulated macrophage cell lysates. Methods in Molecular Biology In Press.
    • (2013) Methods in Molecular Biology
    • Miskolci, V.1    Spiering, D.2    Cox, D.3    Hodgson, L.4
  • 35
    • 1842424983 scopus 로고    scopus 로고
    • An improved cyan fluorescent protein variant useful for FRET
    • DOI 10.1038/nbt945
    • Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22: 445-449. (Pubitemid 38451376)
    • (2004) Nature Biotechnology , vol.22 , Issue.4 , pp. 445-449
    • Rizzo, M.A.1    Springer, G.H.2    Granada, B.3    Piston, D.W.4
  • 36
    • 0036158988 scopus 로고    scopus 로고
    • Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1
    • DOI 10.1016/S1097-2765(01)00428-2
    • Parrini MC, Lei M, Harrison SC, Mayer BJ (2002) Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Molecular Cell 9: 73-83. (Pubitemid 34127772)
    • (2002) Molecular Cell , vol.9 , Issue.1 , pp. 73-83
    • Parrini, M.C.1    Lei, M.2    Harrison, S.C.3    Mayer, B.J.4
  • 37
    • 84900464608 scopus 로고    scopus 로고
    • Multiplex Imaging of Rho GTPase Activities in Living Cells
    • Rivero F, editor. New York: Humana Press, Inc.
    • Spiering D, Hodgson L (2011) Multiplex Imaging of Rho GTPase Activities in Living Cells In: Rivero F, editor. Methods in Molecular Biology. New York: Humana Press, Inc.
    • (2011) Methods in Molecular Biology
    • Spiering, D.1    Hodgson, L.2
  • 39
    • 84855893132 scopus 로고    scopus 로고
    • Multiplex Imaging of Rho Family GTPase Activities in Living Cells
    • Spiering D, Hodgson L (2012) Multiplex Imaging of Rho Family GTPase Activities in Living Cells. Methods in Molecular Biology 827: 215-234.
    • (2012) Methods in Molecular Biology , vol.827 , pp. 215-234
    • Spiering, D.1    Hodgson, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.