-
1
-
-
72249091264
-
Rate it again: Increasing recommendation accuracy by user re-rating
-
Amatriain, X., Pujol, J. M., Tintarev, N., and Oliver, N. Rate it again: Increasing recommendation accuracy by user re-rating. In Proc. RecSys 2009, ACM (2009), 173-180
-
(2009)
Proc. RecSys 2009, ACM
, pp. 173-180
-
-
Amatriain, X.1
Pujol, J.M.2
Tintarev, N.3
Oliver, N.4
-
2
-
-
36849079891
-
Modeling relationships at multiple scales to improve accuracy of large recommender systems
-
Bell, R. M., Koren, Y., and Volinsky, C. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In Proc. KDD 2007, ACM (2007), 95-104
-
(2007)
Proc. KDD 2007, ACM
, pp. 95-104
-
-
Bell, R.M.1
Koren, Y.2
Volinsky, C.3
-
4
-
-
84867389232
-
Taste-Weights: A visual interactive hybrid recommender system
-
Bostandjiev, S., O'Donovan, J., and Höllerer, T. Taste-Weights: A visual interactive hybrid recommender system. In Proc. RecSys 2012, ACM (2012), 35-42
-
(2012)
Proc. RecSys 2012, ACM
, pp. 35-42
-
-
Bostandjiev, S.1
O'Donovan, J.2
Höllerer, T.3
-
5
-
-
82555195625
-
2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011)
-
Cantador, I., Brusilovsky, P., and Kuflik, T. 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011). In Proc. RecSys 2011, ACM (2011)
-
(2011)
Proc. RecSys 2011, ACM
-
-
Cantador, I.1
Brusilovsky, P.2
Kuflik, T.3
-
6
-
-
84858701909
-
Critiquing-based recommenders: Survey and emerging trends
-
Chen, L., and Pu, P. Critiquing-based recommenders: Survey and emerging trends. User Modeling and User-Adapted Interaction 22, 1-2 (2012), 125-150
-
(2012)
User Modeling and User-Adapted Interaction
, vol.22
, Issue.1-2
, pp. 125-150
-
-
Chen, L.1
Pu, P.2
-
8
-
-
78649975969
-
The YouTube video recommendation system
-
Davidson, J., Liebald, B., Liu, J., Nandy, P., van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., and Sampath, D. The YouTube video recommendation system. In Proc. RecSys 2010, ACM (2010), 293-296
-
(2010)
Proc. RecSys 2010, ACM
, pp. 293-296
-
-
Davidson, J.1
Liebald, B.2
Liu, J.3
Nandy, P.4
Van Vleet, T.5
Gargi, U.6
Gupta, S.7
He, Y.8
Lambert, M.9
Livingston, B.10
Sampath, D.11
-
9
-
-
84871531231
-
Statistical significance of the netflix challenge
-
Feuerverger, A., He, Y., and Khatri, S. Statistical significance of the netflix challenge. Statistical Science 27, 2 (2012), 202-231
-
(2012)
Statistical Science
, vol.27
, Issue.2
, pp. 202-231
-
-
Feuerverger, A.1
He, Y.2
Khatri, S.3
-
10
-
-
82555181725
-
MyMediaLite: A free recommender system library
-
Gantner, Z., Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. MyMediaLite: A free recommender system library. In Proc. RecSys 2011, ACM (2011), 305-308
-
(2011)
Proc. RecSys 2011, ACM
, pp. 305-308
-
-
Gantner, Z.1
Rendle, S.2
Freudenthaler, C.3
Schmidt-Thieme, L.4
-
11
-
-
78649970493
-
Beyond accuracy: Evaluating recommender systems by coverage and serendipity
-
Ge, M., Delgado-Battenfeld, C., and Jannach, D. Beyond accuracy: Evaluating recommender systems by coverage and serendipity. In Proc. RecSys 2010, ACM (2010), 257-260
-
(2010)
Proc. RecSys 2010, ACM
, pp. 257-260
-
-
Ge, M.1
Delgado-Battenfeld, C.2
Jannach, D.3
-
12
-
-
77955987832
-
Conjoint analysis in consumer research: Issues and outlook
-
Green, P. E., and Srinivasan, V. Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research 5, 2 (1978), 103-123
-
(1978)
Journal of Consumer Research
, vol.5
, Issue.2
, pp. 103-123
-
-
Green, P.E.1
Srinivasan, V.2
-
13
-
-
77955722387
-
SmallWorlds: Visualizing social recommendations
-
Gretarsson, B., O'Donovan, J., Bostandjiev, S., Hall, C., and Höllerer, T. SmallWorlds: Visualizing social recommendations. Computer Graphics Forum 29, 3 (2010), 833-842
-
(2010)
Computer Graphics Forum
, vol.29
, Issue.3
, pp. 833-842
-
-
Gretarsson, B.1
O'Donovan, J.2
Bostandjiev, S.3
Hall, C.4
Höllerer, T.5
-
14
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22, 1 (2004), 5-53
-
(2004)
ACM Transactions on Information Systems
, vol.22
, Issue.1
, pp. 5-53
-
-
Herlocker, J.L.1
Konstan, J.A.2
Terveen, L.G.3
Riedl, J.4
-
15
-
-
77951115825
-
Tell me more, not just more of the same
-
Iacobelli, F., Birnbaum, L., and Hammond, K. J. Tell me more, not just more of the same. In Proc. IUI 2010, ACM (2010), 81-90
-
(2010)
Proc. IUI 2010, ACM
, pp. 81-90
-
-
Iacobelli, F.1
Birnbaum, L.2
Hammond, K.J.3
-
16
-
-
80155135635
-
Comparison instead of ratings: Towards more stable preferences
-
Jones, N., Brun, A., and Boyer, A. Comparison instead of ratings: Towards more stable preferences. In Proc. WI-IAT 2011, IEEE (2011), 451-456
-
(2011)
Proc. WI-IAT 2011, IEEE
, pp. 451-456
-
-
Jones, N.1
Brun, A.2
Boyer, A.3
-
17
-
-
84867366676
-
Exploiting the characteristics of matrix factorization for active learning in recommender systems
-
Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-Thieme, L. Exploiting the characteristics of matrix factorization for active learning in recommender systems. In Proc. RecSys 2012, ACM (2012), 317-320
-
(2012)
Proc. RecSys 2012, ACM
, pp. 317-320
-
-
Karimi, R.1
Freudenthaler, C.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
18
-
-
84858702721
-
Recommender systems: From algorithms to user experience
-
Konstan, J. A., and Riedl, J. Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction 22, 1-2 (2012), 101-123
-
(2012)
User Modeling and User-Adapted Interaction
, vol.22
, Issue.1-2
, pp. 101-123
-
-
Konstan, J.A.1
Riedl, J.2
-
19
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Koren, Y., Bell, R. M., and Volinsky, C. Matrix factorization techniques for recommender systems. IEEE Computer 42, 8 (2009), 30-37
-
(2009)
IEEE Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.M.2
Volinsky, C.3
-
20
-
-
0037252945
-
Amazon. com recommendations: Item-to-item collaborative filtering
-
Linden, G., Smith, B., and York, J. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76-80
-
(2003)
IEEE Internet Computing
, vol.7
, Issue.1
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
21
-
-
70450169670
-
Improving recommender systems with adaptive conversational strategies
-
Mahmood, T., and Ricci, F. Improving recommender systems with adaptive conversational strategies. In Proc. HT 2009, ACM (2009), 73-82
-
(2009)
Proc. HT 2009, ACM
, pp. 73-82
-
-
Mahmood, T.1
Ricci, F.2
-
22
-
-
84869147060
-
Being accurate is not enough: How accuracy metrics have hurt recommender systems
-
McNee, S., Riedl, J., and Konstan, J. A. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In Ext. Abstracts CHI 2006, ACM (2006), 1097-1101
-
(2006)
Ext. Abstracts CHI 2006, ACM
, pp. 1097-1101
-
-
McNee, S.1
Riedl, J.2
Konstan, J.A.3
-
24
-
-
84867333920
-
Evaluating recommender systems from the users perspective: Survey of the state of the art
-
Pu, P., Chen, L., and Hu, R. Evaluating recommender systems from the users perspective: Survey of the state of the art. User Modeling and User-Adapted Interaction 22, 4-5 (2012), 317-355
-
(2012)
User Modeling and User-Adapted Interaction
, vol.22
, Issue.4-5
, pp. 317-355
-
-
Pu, P.1
Chen, L.2
Hu, R.3
-
25
-
-
77955202099
-
Recommender systems handbook
-
Springer, 2010, ch
-
Ricci, F., Rokach, L., and Shapira, B. Recommender Systems Handbook. Springer, 2010, ch. Introduction to Recommender Systems Handbook, 1-35
-
Introduction to Recommender Systems Handbook
, pp. 1-35
-
-
Ricci, F.1
Rokach, L.2
Shapira, B.3
-
26
-
-
0003268218
-
Improving retrieval performance by relevance feedback
-
Morgan Kaufmann
-
Salton, G., and Buckley, C. Improving retrieval performance by relevance feedback. In Readings in Information Retrieval. Morgan Kaufmann, 1997, 355-364
-
(1997)
Readings in Information Retrieval
, pp. 355-364
-
-
Salton, G.1
Buckley, C.2
-
27
-
-
3042642474
-
The influence of online product recommendations on consumers online choices
-
Senecal, S., and Nantel, J. The influence of online product recommendations on consumers online choices. Journal of Retailing 80, 2 (2004), 159-169
-
(2004)
Journal of Retailing
, vol.80
, Issue.2
, pp. 159-169
-
-
Senecal, S.1
Nantel, J.2
-
30
-
-
79960495877
-
Recommender systems handbook
-
Springer, 2010, ch
-
Tintarev, N., and Masthoff, J. Recommender Systems Handbook. Springer, 2010, ch. Designing and Evaluating Explanations for Recommender Systems, 479-510
-
Designing and Evaluating Explanations for Recommender Systems
, pp. 479-510
-
-
Tintarev, N.1
Masthoff, J.2
-
31
-
-
82555191365
-
Rank and relevance in novelty and diversity metrics for recommender systems
-
Vargas, S., and Castells, P. Rank and relevance in novelty and diversity metrics for recommender systems. In Proc. RecSys 2011, ACM (2011), 109-116
-
(2011)
Proc. RecSys 2011, ACM
, pp. 109-116
-
-
Vargas, S.1
Castells, P.2
-
32
-
-
79952748994
-
Navigating the tag genome
-
Vig, J., Sen, S., and Riedl, J. Navigating the tag genome. In Proc. IUI 2011, ACM (2011), 93-102
-
(2011)
Proc. IUI 2011, ACM
, pp. 93-102
-
-
Vig, J.1
Sen, S.2
Riedl, J.3
-
33
-
-
33847704486
-
E-commerce product recommendation agents: Use, characteristics, and impact
-
Xiao, B., and Benbasat, I. E-commerce product recommendation agents: Use, characteristics, and impact. MIS Quarterly 31, 1 (2007), 137-209
-
(2007)
MIS Quarterly
, vol.31
, Issue.1
, pp. 137-209
-
-
Xiao, B.1
Benbasat, I.2
-
34
-
-
84889565597
-
Interactive collaborative filtering
-
Zhao, X., Zhang, W., and Wang, J. Interactive collaborative filtering. In Proc. CIKM 2013, ACM (2013), 1411-1420
-
(2013)
Proc. CIKM 2013, ACM
, pp. 1411-1420
-
-
Zhao, X.1
Zhang, W.2
Wang, J.3
-
35
-
-
80052119372
-
Functional matrix factorizations for cold-start recommendation
-
Zhou, K, Yang, S.-H., and Zha, H. Functional matrix factorizations for cold-start recommendation. In Proc. SIGIR 2011, ACM (2011), 315-324.
-
(2011)
Proc. SIGIR 2011, ACM
, pp. 315-324
-
-
Zhou, K.1
Yang, S.-H.2
Zha, H.3
|