메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3085-3094

Choice-based preference elicitation for collaborative filtering recommender systems

Author keywords

Interactive Recommending; Matrix Factorization; Recommender Systems; User Interfaces

Indexed keywords

HUMAN ENGINEERING; USER INTERFACES;

EID: 84900403635     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2556288.2557069     Document Type: Conference Paper
Times cited : (85)

References (35)
  • 1
  • 2
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • Bell, R. M., Koren, Y., and Volinsky, C. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In Proc. KDD 2007, ACM (2007), 95-104
    • (2007) Proc. KDD 2007, ACM , pp. 95-104
    • Bell, R.M.1    Koren, Y.2    Volinsky, C.3
  • 5
    • 82555195625 scopus 로고    scopus 로고
    • 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011)
    • Cantador, I., Brusilovsky, P., and Kuflik, T. 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011). In Proc. RecSys 2011, ACM (2011)
    • (2011) Proc. RecSys 2011, ACM
    • Cantador, I.1    Brusilovsky, P.2    Kuflik, T.3
  • 6
    • 84858701909 scopus 로고    scopus 로고
    • Critiquing-based recommenders: Survey and emerging trends
    • Chen, L., and Pu, P. Critiquing-based recommenders: Survey and emerging trends. User Modeling and User-Adapted Interaction 22, 1-2 (2012), 125-150
    • (2012) User Modeling and User-Adapted Interaction , vol.22 , Issue.1-2 , pp. 125-150
    • Chen, L.1    Pu, P.2
  • 9
    • 84871531231 scopus 로고    scopus 로고
    • Statistical significance of the netflix challenge
    • Feuerverger, A., He, Y., and Khatri, S. Statistical significance of the netflix challenge. Statistical Science 27, 2 (2012), 202-231
    • (2012) Statistical Science , vol.27 , Issue.2 , pp. 202-231
    • Feuerverger, A.1    He, Y.2    Khatri, S.3
  • 11
    • 78649970493 scopus 로고    scopus 로고
    • Beyond accuracy: Evaluating recommender systems by coverage and serendipity
    • Ge, M., Delgado-Battenfeld, C., and Jannach, D. Beyond accuracy: Evaluating recommender systems by coverage and serendipity. In Proc. RecSys 2010, ACM (2010), 257-260
    • (2010) Proc. RecSys 2010, ACM , pp. 257-260
    • Ge, M.1    Delgado-Battenfeld, C.2    Jannach, D.3
  • 12
    • 77955987832 scopus 로고
    • Conjoint analysis in consumer research: Issues and outlook
    • Green, P. E., and Srinivasan, V. Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research 5, 2 (1978), 103-123
    • (1978) Journal of Consumer Research , vol.5 , Issue.2 , pp. 103-123
    • Green, P.E.1    Srinivasan, V.2
  • 16
    • 80155135635 scopus 로고    scopus 로고
    • Comparison instead of ratings: Towards more stable preferences
    • Jones, N., Brun, A., and Boyer, A. Comparison instead of ratings: Towards more stable preferences. In Proc. WI-IAT 2011, IEEE (2011), 451-456
    • (2011) Proc. WI-IAT 2011, IEEE , pp. 451-456
    • Jones, N.1    Brun, A.2    Boyer, A.3
  • 17
    • 84867366676 scopus 로고    scopus 로고
    • Exploiting the characteristics of matrix factorization for active learning in recommender systems
    • Karimi, R., Freudenthaler, C., Nanopoulos, A., and Schmidt-Thieme, L. Exploiting the characteristics of matrix factorization for active learning in recommender systems. In Proc. RecSys 2012, ACM (2012), 317-320
    • (2012) Proc. RecSys 2012, ACM , pp. 317-320
    • Karimi, R.1    Freudenthaler, C.2    Nanopoulos, A.3    Schmidt-Thieme, L.4
  • 18
    • 84858702721 scopus 로고    scopus 로고
    • Recommender systems: From algorithms to user experience
    • Konstan, J. A., and Riedl, J. Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction 22, 1-2 (2012), 101-123
    • (2012) User Modeling and User-Adapted Interaction , vol.22 , Issue.1-2 , pp. 101-123
    • Konstan, J.A.1    Riedl, J.2
  • 19
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren, Y., Bell, R. M., and Volinsky, C. Matrix factorization techniques for recommender systems. IEEE Computer 42, 8 (2009), 30-37
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.M.2    Volinsky, C.3
  • 20
    • 0037252945 scopus 로고    scopus 로고
    • Amazon. com recommendations: Item-to-item collaborative filtering
    • Linden, G., Smith, B., and York, J. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76-80
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 21
    • 70450169670 scopus 로고    scopus 로고
    • Improving recommender systems with adaptive conversational strategies
    • Mahmood, T., and Ricci, F. Improving recommender systems with adaptive conversational strategies. In Proc. HT 2009, ACM (2009), 73-82
    • (2009) Proc. HT 2009, ACM , pp. 73-82
    • Mahmood, T.1    Ricci, F.2
  • 22
    • 84869147060 scopus 로고    scopus 로고
    • Being accurate is not enough: How accuracy metrics have hurt recommender systems
    • McNee, S., Riedl, J., and Konstan, J. A. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In Ext. Abstracts CHI 2006, ACM (2006), 1097-1101
    • (2006) Ext. Abstracts CHI 2006, ACM , pp. 1097-1101
    • McNee, S.1    Riedl, J.2    Konstan, J.A.3
  • 24
    • 84867333920 scopus 로고    scopus 로고
    • Evaluating recommender systems from the users perspective: Survey of the state of the art
    • Pu, P., Chen, L., and Hu, R. Evaluating recommender systems from the users perspective: Survey of the state of the art. User Modeling and User-Adapted Interaction 22, 4-5 (2012), 317-355
    • (2012) User Modeling and User-Adapted Interaction , vol.22 , Issue.4-5 , pp. 317-355
    • Pu, P.1    Chen, L.2    Hu, R.3
  • 26
    • 0003268218 scopus 로고    scopus 로고
    • Improving retrieval performance by relevance feedback
    • Morgan Kaufmann
    • Salton, G., and Buckley, C. Improving retrieval performance by relevance feedback. In Readings in Information Retrieval. Morgan Kaufmann, 1997, 355-364
    • (1997) Readings in Information Retrieval , pp. 355-364
    • Salton, G.1    Buckley, C.2
  • 27
    • 3042642474 scopus 로고    scopus 로고
    • The influence of online product recommendations on consumers online choices
    • Senecal, S., and Nantel, J. The influence of online product recommendations on consumers online choices. Journal of Retailing 80, 2 (2004), 159-169
    • (2004) Journal of Retailing , vol.80 , Issue.2 , pp. 159-169
    • Senecal, S.1    Nantel, J.2
  • 28
    • 0038726008 scopus 로고    scopus 로고
    • The role of transparency in recommender systems
    • Sinha, R., and Swearingen, K. The role of transparency in recommender systems. In Ext. Abstracts CHI 2002, ACM (2002), 830-831
    • (2002) Ext. Abstracts CHI 2002, ACM , pp. 830-831
    • Sinha, R.1    Swearingen, K.2
  • 31
    • 82555191365 scopus 로고    scopus 로고
    • Rank and relevance in novelty and diversity metrics for recommender systems
    • Vargas, S., and Castells, P. Rank and relevance in novelty and diversity metrics for recommender systems. In Proc. RecSys 2011, ACM (2011), 109-116
    • (2011) Proc. RecSys 2011, ACM , pp. 109-116
    • Vargas, S.1    Castells, P.2
  • 33
    • 33847704486 scopus 로고    scopus 로고
    • E-commerce product recommendation agents: Use, characteristics, and impact
    • Xiao, B., and Benbasat, I. E-commerce product recommendation agents: Use, characteristics, and impact. MIS Quarterly 31, 1 (2007), 137-209
    • (2007) MIS Quarterly , vol.31 , Issue.1 , pp. 137-209
    • Xiao, B.1    Benbasat, I.2
  • 34
    • 84889565597 scopus 로고    scopus 로고
    • Interactive collaborative filtering
    • Zhao, X., Zhang, W., and Wang, J. Interactive collaborative filtering. In Proc. CIKM 2013, ACM (2013), 1411-1420
    • (2013) Proc. CIKM 2013, ACM , pp. 1411-1420
    • Zhao, X.1    Zhang, W.2    Wang, J.3
  • 35
    • 80052119372 scopus 로고    scopus 로고
    • Functional matrix factorizations for cold-start recommendation
    • Zhou, K, Yang, S.-H., and Zha, H. Functional matrix factorizations for cold-start recommendation. In Proc. SIGIR 2011, ACM (2011), 315-324.
    • (2011) Proc. SIGIR 2011, ACM , pp. 315-324
    • Zhou, K.1    Yang, S.-H.2    Zha, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.