-
1
-
-
84871576456
-
-
ACM SIGKDD Available at
-
ACM SIGKDD (2007). KDD Cup and Workshop 2007. Available at www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html.
-
(2007)
KDD Cup and Workshop 2007
-
-
-
2
-
-
20844435854
-
Towards the next generation of recommender systems: A survey of the state-ofthe-art and possible extensions
-
ADOMAVICIUS, G. and TUZHILIN, A. (2005). Towards the next generation of recommender systems: A survey of the state-ofthe-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17 634-749.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, pp. 634-749
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
3
-
-
4043135554
-
Optimal predictive model selection
-
BARBIERI, M. M. and BERGER, J. O. (2004). Optimal predictive model selection. Ann. Statist. 32 870-897.
-
(2004)
Ann. Statist.
, vol.32
, pp. 870-897
-
-
Barbieri, M.M.1
Berger, J.O.2
-
4
-
-
0002167090
-
Predicted squared error: A criterion for automatic model selection
-
(S. Farrow, ed.) Marcel Dekker, New York
-
BARON, A. (1984). Predicted squared error: A criterion for automatic model selection. In Self-Organizing Methods in Modeling (S. Farrow, ed.). Marcel Dekker, New York.
-
(1984)
Self-Organizing Methods in Modeling
-
-
Baron, A.1
-
6
-
-
48949100471
-
Improved neighborhood-based collaborative filtering
-
ACM, New York
-
BELL, R. and KOREN, Y. (2007). Improved neighborhood-based collaborative filtering. In Proc. KDD Cup and Workshop 2007 7-14. ACM, New York.
-
(2007)
Proc. KDD Cup and Workshop 2007.
, pp. 7-14
-
-
Bell, R.1
Koren, Y.2
-
7
-
-
49749086487
-
Scalable collaborative filtering with jointly derived neighborhood interpolation weights
-
IEEE Computer Society, Los Alamitos, CA
-
BELL, R. and KOREN, Y. (2007). Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In Proc. Seventh IEEE Int. Conf. on Data Mining 43-52. IEEE Computer Society, Los Alamitos, CA.
-
(2007)
Proc. Seventh IEEE Int. Conf. on Data Mining
, pp. 43-52
-
-
Bell, R.1
Koren, Y.2
-
8
-
-
36849079891
-
Modeling relationships at multiple scales to improve accuracy of large recommender systems
-
Proc. 13th ACM SIGKDD Int ACM, New York
-
BELL, R., KOREN, Y. and VOLINSKY, C. (2007). Modeling relationships at multiple scales to improve accuracy of large recommender systems. In Proc. 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 95-104. ACM, New York.
-
(2007)
Conf. on Knowledge Discovery and Data Mining.
, pp. 95-104
-
-
Bell, R.1
Koren, Y.2
Volinsky, C.3
-
10
-
-
70349811921
-
Chasing $1,000 000: How we won the Netflix Progress Prize
-
BELL, R., KOREN, Y. and VOLINSKY, C. (2007). Chasing $1,000,000: How we won the Netflix Progress Prize. ASA Statistical and Computing Graphics Newsletter 18 4-12.
-
(2007)
ASA Statistical and Computing Graphics Newsletter
, vol.18
, pp. 4-12
-
-
Bell, R.1
Koren, Y.2
Volinsky, C.3
-
12
-
-
66149095127
-
The million dollar programming prize
-
BELL, R. M., BENNETT, J., KOREN, Y. and VOLINSKY, C. (2009). The million dollar programming prize. IEEE Spectrum 46 28-33.
-
(2009)
IEEE Spectrum
, vol.46
, pp. 28-33
-
-
Bell, R.M.1
Bennett, J.2
Koren, Y.3
Volinsky, C.4
-
14
-
-
0011451154
-
Bayesian robustness and the Stein effect
-
BERGER, J. (1982). Bayesian robustness and the Stein effect. J. Amer. Statist. Assoc. 77 358-368.
-
(1982)
J. Amer. Statist. Assoc.
, vol.77
, pp. 358-368
-
-
Berger, J.1
-
17
-
-
0030211964
-
Bagging predictors
-
BREIMAN, L. (1996). Bagging predictors. Machine Learning 26 123-140.
-
(1996)
Machine Learning
, vol.26
, pp. 123-140
-
-
Breiman, L.1
-
18
-
-
0000927638
-
Predicting multivariate responses in multiple linear regression (with discussion)
-
BREIMAN, L. and FRIEDMAN, J. H. (1997). Predicting multivariate responses in multiple linear regression (with discussion). J. Roy. Statist. Soc. Ser. B 59 3-54.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 3-54
-
-
Breiman, L.1
Friedman, J.H.2
-
19
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
BURGES, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.1
-
21
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351.
-
(2007)
Ann. Statist.
, vol.35
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
23
-
-
0003231156
-
Bayes and Empirical Bayes Methods for Data Analysis
-
Chapman & Hall, London
-
CARLIN, B. P. and LOUIS, T. A. (1996). Bayes and Empirical Bayes Methods for Data Analysis. Monogr. Statist. Appl. Probab. 69. Chapman & Hall, London.
-
(1996)
Monogr. Statist. Appl. Probab.
, pp. 69
-
-
Carlin, B.P.1
Louis, T.A.2
-
24
-
-
0002632234
-
An introduction to empirical Bayes data analysis
-
CASELLA, G. (1985). An introduction to empirical Bayes data analysis. Amer. Statist. 39 83-87.
-
(1985)
Amer. Statist.
, vol.39
, pp. 83-87
-
-
Casella, G.1
-
28
-
-
0001573594
-
Regression, prediction and shrinkage
-
COPAS, J. B. (1983). Regression, prediction and shrinkage. J. Roy. Statist. Soc. Ser. B 45 311-354.
-
(1983)
J. Roy. Statist. Soc. Ser. B
, vol.45
, pp. 311-354
-
-
Copas, J.B.1
-
30
-
-
84989525001
-
Indexing by latent semantic analysis
-
DEERWESTER, S. C., DUMAIS, S. T., LANDAUER, T. K., FURNAS, G. W. and HARSHMAN, R. A. (1990). Indexing by latent semantic analysis. Journal of the Amercan Society of Information Science 41 391-407.
-
(1990)
Journal of the Amercan Society of Information Science
, vol.41
, pp. 391-407
-
-
Deerwester, S.C.1
Dumais, S.T.2
Landauer, T.K.3
Furnas, G.W.4
Harshman, R.A.5
-
31
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
32
-
-
0343784734
-
Biased versus unbiased estimation
-
EFRON, B. (1975). Biased versus unbiased estimation. Advances in Math. 16 259-277.
-
(1975)
Advances in Math
, vol.16
, pp. 259-277
-
-
Efron, B.1
-
33
-
-
84950461478
-
Estimating the error rate of a prediction rule: Improvement on cross-validation
-
EFRON, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Amer. Statist. Assoc. 78 316-331.
-
(1983)
J. Amer. Statist. Assoc.
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
34
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule
-
EFRON, B. (1986). How biased is the apparent error rate of a prediction rule. J. Amer. Statist. Assoc. 81 461-470.
-
(1986)
J. Amer. Statist. Assoc.
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
35
-
-
0347568778
-
Empirical Bayes methods for combining likelihoods (with discussion)
-
EFRON, B. (1996). Empirical Bayes methods for combining likelihoods (with discussion). J. Amer. Statist. Assoc. 91 538-565.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, pp. 538-565
-
-
Efron, B.1
-
36
-
-
4944239996
-
The estimation of prediction error: Covariance penalties and cross-validation (with discussion)
-
EFRON, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation (with discussion). J. Amer. Statist. Assoc. 99 619-642.
-
(2004)
J. Amer. Statist. Assoc.
, vol.99
, pp. 619-642
-
-
Efron, B.1
-
38
-
-
0000310469
-
Limiting the risk of Bayes and empirical Bayes estimators II. The empirical Bayes case
-
EFRON, B. and MORRIS, C. (1972). Limiting the risk of Bayes and empirical Bayes estimators. II. The empirical Bayes case. J. Amer. Statist. Assoc. 67 130-139.
-
(1972)
J. Amer. Statist. Assoc.
, vol.67
, pp. 130-139
-
-
Efron, B.1
Morris, C.2
-
39
-
-
0001401955
-
Empirical Bayes on vector observations: An extension of Stein's method
-
EFRON, B. and MORRIS, C. (1972). Empirical Bayes on vector observations: An extension of Stein's method. Biometrika 59 335-347.
-
(1972)
Biometrika
, vol.59
, pp. 335-347
-
-
Efron, B.1
Morris, C.2
-
40
-
-
84949161149
-
Stein's estimation rule and its competitors-an empirical Bayes approach
-
EFRON, B. and MORRIS, C. (1973). Stein's estimation rule and its competitors-an empirical Bayes approach. J. Amer. Statist. Assoc. 68 117-130.
-
(1973)
J. Amer. Statist. Assoc.
, vol.68
, pp. 117-130
-
-
Efron, B.1
Morris, C.2
-
41
-
-
0000053186
-
Combining possibly related estimation problems (with discussion)
-
EFRON, B. andMORRIS, C. (1973). Combining possibly related estimation problems (with discussion). J. Roy. Statist. Soc. Ser. B 35 379-421.
-
(1973)
J. Roy. Statist. Soc. Ser. B
, vol.35
, pp. 379-421
-
-
Efron, B.1
Morris, C.2
-
42
-
-
84949161141
-
Data analysis using Stein's estimator and its generalization
-
EFRON, B. and MORRIS, C. (1975). Data analysis using Stein's estimator and its generalization. J. Amer. Statist. Assoc. 70 311-319.
-
(1975)
J. Amer. Statist. Assoc.
, vol.70
, pp. 311-319
-
-
Efron, B.1
Morris, C.2
-
43
-
-
0000129805
-
Stein's paradox in statistics
-
EFRON, B. and MORRIS, C. (1977). Stein's paradox in statistics. Scientific American 236 119-127.
-
(1977)
Scientific American
, vol.236
, pp. 119-127
-
-
Efron, B.1
Morris, C.2
-
44
-
-
3242708140
-
Least angle regression (with discussion)
-
EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407-499.
-
(2004)
Ann. Statist.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
45
-
-
84878031768
-
Statistical challenges with high dimensionality: Feature selection in knowledge discovery
-
Eur. Math. Soc., Zürich
-
FAN, J. and LI, R. (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In International Congress of Mathematicians III 595-622. Eur. Math. Soc., Zürich.
-
(2006)
International Congress of Mathematicians III
, pp. 595-622
-
-
Fan, J.1
Li, R.2
-
47
-
-
85044929329
-
-
See Webb, B. (2006/2007)
-
FUNK, S. (2006/2007). See Webb, B. (2006/2007).
-
(2006/2007)
-
-
Funk, S.1
-
49
-
-
31344454903
-
Persistence in highdimensional linear predictor selection and the virtue of overparametrization
-
GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in highdimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 971-988.
-
(2004)
Bernoulli
, vol.10
, pp. 971-988
-
-
Greenshtein, E.1
Ritov, Y.2
-
50
-
-
0003684449
-
-
2nd ed. Springer, New York
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning, 2nd ed. Springer, New York.
-
(2009)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
51
-
-
85015559680
-
An algorithmic framework for performing collaborative filtering
-
HERLOCKER, J. L., KONSTAN, J. A., BORCHERS, A. and RIEDL, J. (1999). An algorithmic framework for performing collaborative filtering. In Proc. 22nd ACM SIGIR Conf. on Information Retrieval 230-237.
-
(1999)
Proc. 22nd ACM SIGIR Conf. on Information Retrieval
, pp. 230-237
-
-
Herlocker, J.L.1
Konstan, J.A.2
Borchers, A.3
Riedl, J.4
-
52
-
-
0034446870
-
Explaining collaborative filtering recommendations
-
ACM, New York
-
HERLOCKER, J. L.,KONSTAN, J. A. andRIEDL, J. T. (2000). Explaining collaborative filtering recommendations. In Proc. 2000 ACM Conf. on Computer Supported Cooperative Work 241-250. ACM, New York.
-
(2000)
Proc. 2000 ACM Conf. on Computer Supported Cooperative Work.
, pp. 241-250
-
-
Herlocker, J.L.1
Konstan, J.A.2
Riedl, J.T.3
-
53
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G. and RIEDL, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22 5-53.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, pp. 5-53
-
-
Herlocker, J.L.1
Konstan, J.A.2
Terveen, L.G.3
Riedl, J.T.4
-
54
-
-
0003979924
-
-
Addison-Wesley, Redwood City, CA
-
HERTZ, J., KROGH, A. and PALMER, R. G. (1991). Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, CA.
-
(1991)
Introduction to the Theory of Neural Computation
-
-
Hertz, J.1
Krogh, A.2
Palmer, R.G.3
-
55
-
-
0029181921
-
Recommending and evaluating choices in a virtual community of use
-
ACM, New York
-
HILL, W., STEAD, L., ROSENSTEIN, M. and FURNAS, G. (1995). Recommending and evaluating choices in a virtual community of use. In Proc. SIGCHI Conf. on Human Factors in Computing Systems 194-201. ACM, New York.
-
(1995)
Proc. SIGCHI Conf. on Human Factors in Computing Systems.
, pp. 194-201
-
-
Hill, W.1
Stead, L.2
Rosenstein, M.3
Furnas, G.4
-
56
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
HINTON, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comput. 14 1771-1800.
-
(2002)
Neural Comput
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
57
-
-
0034818212
-
Unsupervised learning by probabilistic latent semantic analysis
-
HOFMANN, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. J 42 177-196.
-
(2001)
Mach. Learn. J
, vol.42
, pp. 177-196
-
-
Hofmann, T.1
-
59
-
-
3042742744
-
Latent semantic models for collaborative filtering
-
HOFMANN, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions on Information Systems 22 89-115.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, pp. 89-115
-
-
Hofmann, T.1
-
60
-
-
84862271600
-
Latent class models for collaborative filtering
-
Morgan Kaufmann, San Francisco, CA
-
HOFMANN, T. and PUZICHA, J. (1999). Latent class models for collaborative filtering. In Proc. Int. Joint Conf. on Artificial Intelligence 2 688-693. Morgan Kaufmann, San Francisco, CA.
-
(1999)
Proc. Int. Joint Conf. on Artificial Intelligence.
, vol.2
, pp. 688-693
-
-
Hofmann, T.1
Puzicha, J.2
-
61
-
-
84867050405
-
-
Technical report, AT&T Labs-Research, Florham Park, NJ
-
HU, Y., KOREN, Y. and VOLINSKY, C. (2008). Collaborative filtering for implicit feedback datasets. Technical report, AT&T Labs-Research, Florham Park, NJ.
-
(2008)
Collaborative filtering for implicit feedback datasets
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
64
-
-
17844390666
-
Collaborative filtering based on iterative principal component analysis
-
KIM, D. and YUM, B. (2005). Collaborative filtering based on iterative principal component analysis. Expert Systems with Applications 28 823-830.
-
(2005)
Expert Systems with Applications
, vol.28
, pp. 823-830
-
-
Kim, D.1
Yum, B.2
-
66
-
-
70350647708
-
Collaborative filtering with temporal dynamics
-
Proc. 15th ACM SIGKDD Int CM, New York
-
KOREN, Y. (2009). Collaborative filtering with temporal dynamics. In Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 447-456. ACM, New York.
-
(2009)
Conf. on Knowledge Discovery and Data Mining.
, pp. 447-456
-
-
Koren, Y.1
-
68
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
KOREN, Y., BELL, R. and VOLINSKY, C. (2009). Matrix factorization techniques for recommender systems. Computer 42 (8) 30-37.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
69
-
-
0000840124
-
From Stein's unbiased risk estimates to the method of generalized cross validation
-
LI, K.-C. (1985). From Stein's unbiased risk estimates to the method of generalized cross validation. Ann. Statist. 13 1352-1377.
-
(1985)
Ann. Statist
, vol.13
, pp. 1352-1377
-
-
Li, K.-C.1
-
70
-
-
48249140327
-
Variational Bayesian approach to movie rating predictions
-
ACM, New York
-
LIM, Y. J. and TEH, Y. W. (2007). Variational Bayesian approach to movie rating predictions. In Proc. KDD Cup and Workshop 2007 15-21. ACM, New York.
-
(2007)
Proc. KDD Cup and Workshop 2007.
, pp. 15-21
-
-
Lim, Y.J.1
Teh, Y.W.2
-
71
-
-
84871570198
-
Statistical Analysis with Missing Data. Wiley, New York. MR0890519 MALLOWS
-
LITTLE, R. J. A. and RUBIN, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York. MR0890519 MALLOWS, C. (1973). Some comments on Cp. Technometrics 15 661-675.
-
(1987)
C. (1973). Some comments on Cp. Technometrics
, vol.15
, pp. 661-675
-
-
Little, R.J.A.1
Rubin, D.B.2
-
72
-
-
0004271291
-
-
2nd ed. Monogr. Statist. Appl. Probab. 35. Chapman & Hall, London
-
MARITZ, J. S. and LWIN, T. (1989). Empirical Bayes Methods, 2nd ed. Monogr. Statist. Appl. Probab. 35. Chapman & Hall, London.
-
(1989)
Empirical Bayes Methods
-
-
Maritz, J.S.1
Lwin, T.2
-
75
-
-
58149183811
-
Collaborative filtering and the missing at random assumption
-
AMC, New York
-
MARLIN, B., ZEMEL, R. S.,ROWEIS, S. and SLANEY, M. (2007). Collaborative filtering and the missing at random assumption. In Proc. 23rd Conf. on Uncertainty in Artificial Intelligence. AMC, New York.
-
(2007)
Proc. 23rd Conf. on Uncertainty in Artificial Intelligence.
-
-
Marlin, B.1
Zemel, R.S.2
Roweis, S.3
Slaney, M.4
-
76
-
-
33846662159
-
Support vector machines with applications
-
MOGUERZA, J. M. and MUÑOZ, A. (2006). Support vector machines with applications. Statist. Sci. 21 322-336.
-
(2006)
Statist. Sci.
, vol.21
, pp. 322-336
-
-
Moguerza, J.M.1
Muñoz, A.2
-
77
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
Morgan Kaufmann, San Francisco, CA
-
MOODY, J. E. (1992). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In Advances in Neural Information Processing Systems 4. Morgan Kaufmann, San Francisco, CA.
-
(1992)
Advances in Neural Information Processing Systems 4
-
-
Moody, J.E.1
-
78
-
-
84950432453
-
Parametric empirical Bayes inference: Theory and applications (with discussion)
-
MORRIS, C. N. (1983). Parametric empirical Bayes inference: Theory and applications (with discussion). J. Amer. Statist. Assoc. 78 47-65.
-
(1983)
J. Amer. Statist. Assoc.
, vol.78
, pp. 47-65
-
-
Morris, C.N.1
-
80
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse and other variants
-
(M. I. Jordan, ed.). Kluwer
-
NEAL, R. M. and HINTON, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse and other variants. In Learning in Graphical Models (M. I. Jordan, ed.) 355-368. Kluwer.
-
(1998)
In Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
81
-
-
84871558266
-
-
Netflix Prize Leaderboard Netflix Prize Forum NETFLIX INC
-
NETFLIX INC. (2006/2010). Netflix Prize webpage: http://www. netflixprize.com/. Netflix Prize Leaderboard: http://www. netflixprize.com/leaderboard/. Netflix Prize Forum: www. netflixprize.com/community/.
-
(2006/2010)., Netflix Prize webpage
-
-
-
84
-
-
57949113756
-
Improving regularized singular value decomposition for collaborative filtering
-
ACM, New York
-
PATEREK, A. (2007). Improving regularized singular value decomposition for collaborative filtering. In Proc. KDD Cup and Workshop 2007 39-42. ACM, New York.
-
(2007)
Proc. KDD Cup and Workshop 2007.
, pp. 39-42
-
-
Paterek, A.1
-
86
-
-
0012253296
-
Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
-
Morgan Kaufmann, San Francisco, CA
-
POPESCUL, A., UNGAR, L., PENNOCK, D. and LAWRENCE, S. (2001). Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In Proc. 17th Conf. on Uncertainty Artificial Intelligence. Morgan Kaufmann, San Francisco, CA. 437-444.
-
(2001)
Proc. 17th Conf. on Uncertainty Artificial Intelligence.
, pp. 437-444
-
-
Popescul, A.1
Ungar, L.2
Pennock, D.3
Lawrence, S.4
-
87
-
-
84871564387
-
-
on Recommender Systems 2008
-
PU, P., BRIDGE, D. G.,MOBASHER, B. and RICCI, F. (2008). In Proc. ACM Conf. on Recommender Systems 2008.
-
(2008)
Proc. ACM Conf.
-
-
Pu, P.1
Bridge, D.G.2
Mobasher, B.3
Ricci, F.4
-
88
-
-
38049188186
-
-
ECML 2007 (J. N. Kok et al. eds.). Springer, Berlin
-
RAIKO, T., ILIN, A. and KARHUNEN, J. (2007). Principal component analysis for large scale problems with lots of missing values. In ECML 2007. Lecture Notes in Artificiant Intelligence 4701 (J. N. Kok et al. eds.) 691-698. Springer, Berlin.
-
(2007)
Principal component analysis for large scale problems with lots of missing values. Lecture Notes in Artificiant Intelligence 4701
, pp. 691-698
-
-
Raiko, T.1
Ilin, A.2
Karhunen, J.3
-
89
-
-
31844451557
-
Fast maximum margin matrix factorization for collaborative prediction
-
ACM, New York
-
RENNIE, J. D. M. and SREBRO, N. (2005). Fast maximum margin matrix factorization for collaborative prediction. In Proc. 22nd Int. Conf. on Machine Learning 713-719. ACM, New York.
-
(2005)
Proc. 22nd Int. Conf. on Machine Learning.
, pp. 713-719
-
-
Rennie, J.D.M.1
Srebro, N.2
-
91
-
-
85030174634
-
Grouplens: An open architecture for collaborative filtering of netnews
-
RESNICK, P., IACOCOU, N., SUCHAK, M., BERSTROM, P. and RIEDL, J. (1994). Grouplens: An open architecture for collaborative filtering of netnews. In Proc. ACM Conf. on Computer Support Cooperative Work 175-186.
-
(1994)
In Proc. ACM Conf. on Computer Support Cooperative Work
, pp. 175-186
-
-
Resnick, P.1
Iacocou, N.2
Suchak, M.3
Berstrom, P.4
Riedl, J.5
-
93
-
-
0000033354
-
An empirical Bayes approach to statistics
-
In Proc. 3rd Berkeley Sympos Univ. California Press, Berkeley I
-
ROBBINS, H. (1956). An empirical Bayes approach to statistics. In Proc. 3rd Berkeley Sympos. Math. Statist. Probab. I 157-163. Univ. California Press, Berkeley.
-
(1956)
Math. Statist. Probab.
, pp. 157-163
-
-
Robbins, H.1
-
94
-
-
0002533801
-
The empirical Bayes approach to statistical decision problems
-
ROBBINS, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math. Statist. 35 1-20.
-
(1964)
Ann. Math. Statist.
, vol.35
, pp. 1-20
-
-
Robbins, H.1
-
95
-
-
0000801059
-
Some thoughts on empirical Bayes estimation
-
ROBBINS, H. (1983). Some thoughts on empirical Bayes estimation. Ann. Statist. 11 713-723.
-
(1983)
Ann. Statist.
, vol.11
, pp. 713-723
-
-
Robbins, H.1
-
96
-
-
84898929664
-
EM algorithms for PCA and SPCA
-
MIT Press, Cambridge, MA
-
ROWEIS, S. (1997). EM algorithms for PCA and SPCA. In Advances in Neural Information Processing Systems 10 626-632. MIT Press, Cambridge, MA.
-
(1997)
Advances in Neural Information Processing Systems
, vol.10
, pp. 626-632
-
-
Roweis, S.1
-
97
-
-
85161989354
-
Probabilistic matrix factorization
-
MIT Press, Cambridge, MA
-
SALAKHUTDINOV, R. and MNIH, A. (2008). Probabilistic matrix factorization. In Advances in Neural Information Processing Systems 20 1257-1264. MIT Press, Cambridge, MA.
-
(2008)
In Advances in Neural Information Processing Systems
, vol.20
, pp. 1257-1264
-
-
Salakhutdinov, R.1
Mnih, A.2
-
99
-
-
34547983260
-
-
Proc. 24th Int. Conf. on Machine Learning. ACM Inetrnational Conference Proceeding Series. ACM, New York
-
SALAKHUTDINOV, R., MNIH, A. and HINTON, G. (2007). Restricted Boltzmann machines for collaborative filtering. In Proc. 24th Int. Conf. on Machine Learning. ACM Inetrnational Conference Proceeding Series 227 791-798. ACM, New York.
-
(2007)
Restricted Boltzmann machines for collaborative filtering
, vol.227
, pp. 791-798
-
-
Salakhutdinov, R.1
Mnih, A.2
Hinton, G.3
-
101
-
-
3042788736
-
Application of dimensionality reduction in recommender system-a case study
-
ACM, New York
-
SARWAR, B., KARYPIS, G., KONSTAN, J. and RIEDL, J. T. (2000). Application of dimensionality reduction in recommender system-a case study. In Proc. ACM WebKDD Workshop. ACM, New York.
-
(2000)
Proc. ACM WebKDD Workshop.
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.T.4
-
102
-
-
85052617391
-
-
Proc. 10th Int. Conf. on the World Wide Web. ACM, New York
-
SARWAR, B., KARYPIS, G., KONSTAN, J. and RIEDL, J. T. (2001). Item-based collaborative filtering recommendation algorithms. In Proc. 10th Int. Conf. on the World Wide Web 285-295. ACM, New York.
-
(2001)
Item-based collaborative filtering recommendation algorithms
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.T.4
-
103
-
-
1942516801
-
Weighted low-rank approximations
-
(T. Fawcett and N. Mishra, eds.) 720-727. ACM, New York
-
SREBRO, N. and JAAKKOLA, T. (2003). Weighted low-rank approximations. In Proc. Twentieth Int. Conf. on Machine Learning (T. Fawcett and N. Mishra, eds.) 720-727. ACM, New York.
-
(2003)
Proc. Twentieth Int. Conf. on Machine Learning
-
-
Srebro, N.1
Jaakkola, T.2
-
106
-
-
0000169918
-
Estimation of the mean of a multivariate normal distribution
-
STEIN, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151.
-
(1981)
Ann. Statist.
, vol.9
, pp. 1135-1151
-
-
Stein, C.M.1
-
107
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions (with discussion)
-
STONE, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. Ser. B 36 111-147.
-
(1974)
J. Roy. Statist. Soc. Ser. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
108
-
-
57949090017
-
On the Gravity recommendation system
-
ACM, New York
-
TAKACS, G., PILASZY, I., NEMETH, B. and TIKK, D. (2007). On the Gravity recommendation system. In Proc. KDD Cup and Workshop 2007 22-30. ACM, New York.
-
(2007)
In Proc. KDD Cup and Workshop 2007.
, pp. 22-30
-
-
Takacs, G.1
Pilaszy, I.2
Nemeth, B.3
Tikk, D.4
-
109
-
-
48349120710
-
Major components of the Gravity recommendation system
-
TAKACS, G., PILASZY, I., NEMETH, B. and TIKK, D. (2008). Major components of the Gravity recommendation system. SIGKDD Explorations 9 80-83.
-
(2008)
SIGKDD Explorations
, vol.9
, pp. 80-83
-
-
Takacs, G.1
Pilaszy, I.2
Nemeth, B.3
Tikk, D.4
-
110
-
-
77951114011
-
-
Proc. 2nd Netflix-KDD Workshop. ACM, New York
-
TAKACS, G., PILASZY, I., NEMETH, B. and TIKK, D. (2008). Investigation of various matrix factorization methods for large recommender systems. In Proc. 2nd Netflix-KDD Workshop. ACM, New York.
-
(2008)
Investigation of various matrix factorization methods for large recommender systems
-
-
Takacs, G.1
Pilaszy, I.2
Nemeth, B.3
Tikk, D.4
-
111
-
-
63449123891
-
Matrix factorization and neighbor based algorithms for the Netflix Prize problem
-
ACM, New York
-
TAKACS, G., PILASZY, I., NEMETH, B. and TIKK, D. (2008). Matrix factorization and neighbor based algorithms for the Netflix Prize problem. In Proc. ACM Conf. on Recommender Systems 267-274. ACM, New York.
-
(2008)
Proc. ACM Conf. on Recommender Systems.
, pp. 267-274
-
-
Takacs, G.1
Pilaszy, I.2
Nemeth, B.3
Tikk, D.4
-
112
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
-
(1996)
J. Roy. Statist. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
114
-
-
77956202352
-
-
Technical report, commendo research and consulting, Köflach, Austria
-
TOSCHER, A. and JAHRER, M. (2008). The BigChaos solution to the Netflix Prize 2008. Technical report, commendo research and consulting, Köflach, Austria.
-
(2008)
The BigChaos solution to the Netflix Prize 2008
-
-
Toscher, A.1
Jahrer, M.2
-
115
-
-
72049095273
-
-
Technical report, commendo research and consulting, Koflach, Austria
-
TOSCHER, A., JAHRER, M. and BELL, R. M. (2009). The BigChaos solution to the Netflix Grand Prize. Technical report, commendo research and consulting, Koflach, Austria.
-
(2009)
The BigChaos solution to the Netflix Grand Prize
-
-
Toscher, A.1
Jahrer, M.2
Bell, R.M.3
-
117
-
-
77956202935
-
-
Proc. 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. ACM, Washington, DC
-
TOSCHER, A., JAHRER, M. and LEGENSTEIN, R. (2010). Combining predictions for accurate recommender systems. In Proc. 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 693-701. ACM, Washington, DC.
-
(2010)
Combining predictions for accurate recommender systems
, pp. 693-701
-
-
Toscher, A.1
Jahrer, M.2
Legenstein, R.3
-
118
-
-
84871588671
-
-
2nd KDD Workshop on Large Scale Recommender Systems and the Netflix Prize Competition. ACM, New York
-
TUZHILIN, A., KOREN, Y., BENNETT, C., ELKAN, C. and LEMIRE, D. (2008). Proc. 2nd KDD Workshop on Large Scale Recommender Systems and the Netflix Prize Competition. ACM, New York.
-
(2008)
Proc
-
-
Tuzhilin, A.1
Koren, Y.2
Bennett, C.3
Elkan, C.4
Lemire, D.5
-
120
-
-
0035530906
-
Shrinkage and penalized likelihood as methods to improve predictive accuracy
-
VAN HOUWELINGEN, J. C. (2001). Shrinkage and penalized likelihood as methods to improve predictive accuracy. Statist. Neerlandica 55 17-34.
-
(2001)
Statist. Neerlandica
, vol.55
, pp. 17-34
-
-
Van Houwelingen, J.C.1
-
122
-
-
33750345680
-
-
Proc. 29th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, New York
-
WANG, J., DE VRIES, A. P. and REINDERS, M. J. T. (2006). Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proc. 29th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval 501-508. ACM, New York.
-
(2006)
Unifying user-based and item-based collaborative filtering approaches by similarity fusion
, pp. 501-508
-
-
Wang, J.1
De Vries, A.P.2
Reinders, M.J.T.3
-
123
-
-
84871534971
-
-
27 October 2006, 2 November 2006, 11 December 2007 and 17 August 2007. Available at
-
WEBB, B. (aka Funk, S.) (2006/2007). 'Blog' entries, 27 October 2006, 2 November 2006, 11 December 2007 and 17 August 2007. Available at http://sifter.org/~simon/journal/.
-
(aka Funk, S.) (2006/2007). 'Blog' entries
-
-
Webb, B.1
-
124
-
-
48249137439
-
Collaborative filtering via ensembles of matrix factorizations
-
ACM, New York
-
WU, M. (2007). Collaborative filtering via ensembles of matrix factorizations. In Proc. KDD Cup and Workshop 2007 43-47. ACM, New York.
-
(2007)
Proc. KDD Cup and Workshop 2007.
, pp. 43-47
-
-
Wu, M.1
-
125
-
-
0032351389
-
On measuring and correcting the effects of data mining and model selection
-
YE, J. (1998). On measuring and correcting the effects of data mining and model selection. J. Amer. Statist. Assoc. 93 120-131.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 120-131
-
-
Ye, J.1
-
126
-
-
29144459062
-
Efficient empirical Bayes variable selection and estimation in linear models
-
YUAN, M. and LIN, Y. (2005). Efficient empirical Bayes variable selection and estimation in linear models. J. Amer. Statist. Assoc. 100 1215-1225.
-
(2005)
J. Amer. Statist. Assoc.
, vol.100
, pp. 1215-1225
-
-
Yuan, M.1
Lin, Y.2
-
128
-
-
48249089255
-
Large scale parallel collaborative filtering for the Netlix Prize
-
Springer, Berlin
-
ZHOU, Y.,WILKINSON, D., SCHREIBER, R. and PAN, R. (2008). Large scale parallel collaborative filtering for the Netlix Prize. In Proc. 4th Int. Conf. Algorithmic Aspects in Information and Management. Lecture Notes in Comput. Sci. 5031 337-348. Springer, Berlin.
-
(2008)
Proc. 4th Int. Conf. Algorithmic Aspects in Information and Management. Lecture Notes in Comput. Sci.
, vol.5031
, pp. 337-348
-
-
Zhou, Y.1
Wilkinson, D.2
Schreiber, R.3
Pan, R.4
-
130
-
-
34548536008
-
On the "degrees of freedom" of the lasso
-
ZOU, H., HASTIE, T. and TIBSHIRANI, R. (2007). On the "degrees of freedom" of the lasso. Ann. Statist. 35 2173-2192.
-
(2007)
Ann. Statist.
, vol.35
, pp. 2173-2192
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|