메뉴 건너뛰기




Volumn 89, Issue 15, 2014, Pages

Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84899734804     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.89.155405     Document Type: Article
Times cited : (64)

References (50)
  • 3
    • 33847768178 scopus 로고    scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.75.125408
    • O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007). PLRBAQ 0556-2805 10.1103/PhysRevB.75.125408
    • (2007) Phys. Rev. B , vol.75 , pp. 125408
    • Yazyev, O.V.1    Helm, L.2
  • 4
    • 47749146955 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.101.037203
    • O. V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.037203
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 037203
    • Yazyev, O.V.1
  • 7
    • 77950857180 scopus 로고    scopus 로고
    • RPPHAG 0034-4885 10.1088/0034-4885/73/5/056501
    • O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010). RPPHAG 0034-4885 10.1088/0034-4885/73/5/056501
    • (2010) Rep. Prog. Phys. , vol.73 , pp. 056501
    • Yazyev, O.V.1
  • 9
    • 0032179596 scopus 로고    scopus 로고
    • SUSCAS 0039-6028 10.1016/S0039-6028(98)00622-0
    • K. F. Kelly and N. J. Halas, Surf. Sci. 416, 1085 (1998). SUSCAS 0039-6028 10.1016/S0039-6028(98)00622-0
    • (1998) Surf. Sci. , vol.416 , pp. 1085
    • Kelly, K.F.1    Halas, N.J.2
  • 23
    • 84863328690 scopus 로고    scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.85.245443
    • J. J. Palacios and F. Ynduráin, Phys. Rev. B 85, 245443 (2012). PLRBAQ 0556-2805 10.1103/PhysRevB.85.245443
    • (2012) Phys. Rev. B , vol.85 , pp. 245443
    • Palacios, J.J.1    Ynduráin, F.2
  • 25
    • 26144450583 scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.23.5048
    • J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). PLRBAQ 0556-2805 10.1103/PhysRevB.23.5048
    • (1981) Phys. Rev. B , vol.23 , pp. 5048
    • Perdew, J.P.1    Zunger, A.2
  • 26
    • 20544463457 scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.41.7892
    • D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). PLRBAQ 0556-2805 10.1103/PhysRevB.41.7892
    • (1990) Phys. Rev. B , vol.41 , pp. 7892
    • Vanderbilt, D.1
  • 28
    • 1842816907 scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.13.5188
    • H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). PLRBAQ 0556-2805 10.1103/PhysRevB.13.5188
    • (1976) Phys. Rev. B , vol.13 , pp. 5188
    • Monkhorst, H.J.1    Pack, J.D.2
  • 33
    • 84858052478 scopus 로고    scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.85.125409
    • E. Cockayne, Phys. Rev. B 85, 125409 (2012). PLRBAQ 0556-2805 10.1103/PhysRevB.85.125409
    • (2012) Phys. Rev. B , vol.85 , pp. 125409
    • Cockayne, E.1
  • 34
    • 84899739885 scopus 로고    scopus 로고
    • The deposition of the significant amount of the clusters of (Equation presented) atoms (cluster mean lateral size ≈ 4 nm) from the filament onto the surface may occur at relatively long exposure times. To minimize this effect in the present experiment
    • The deposition of the significant amount of the clusters of (Equation presented) atoms (cluster mean lateral size ≈ 4 nm) from the filament onto the surface may occur at relatively long exposure times. To minimize this effect in the present experiment, we carefully adjusted the time of hydrogenation for adopted (Equation presented) cracker-surface separation distances. As a result, the average density of (Equation presented) clusters on the surface is less than 1 cluster per 200 × 200 nm(Equation presented). All data on hydrogenated vacancies reported in the paper were obtained sufficiently far from those rare (Equation presented) contaminations. Meanwhile, we have not seen any experimental STM evidence of presence of the single (Equation presented) adatoms after the hydrogenation of the nonsputtered graphite. Thus, we conclude that in our experimental setup, the deposition of (Equation presented) species on the graphite surface can only occur in a form of the atomic clusters. Therefore, the intercalation of (Equation presented) species through the single vacancy that may induce additional strong modifications in the electronic structure of the top graphitic layer is unlikely in the present experiment due to the apparent mismatch in the size.
  • 36
    • 18344373200 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.50.1998
    • J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983). PRLTAO 0031-9007 10.1103/PhysRevLett.50.1998
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 1998
    • Tersoff, J.1    Hamann, D.R.2
  • 37
    • 33744607543 scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.31.805
    • J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985). PLRBAQ 0556-2805 10.1103/PhysRevB.31.805
    • (1985) Phys. Rev. B , vol.31 , pp. 805
    • Tersoff, J.1    Hamann, D.R.2
  • 39
    • 34247603963 scopus 로고    scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.75.155438
    • Y. Ferro and A. Allouche, Phys. Rev. B 75, 155438 (2007). PLRBAQ 0556-2805 10.1103/PhysRevB.75.155438
    • (2007) Phys. Rev. B , vol.75 , pp. 155438
    • Ferro, Y.1    Allouche, A.2
  • 40
    • 84899718768 scopus 로고    scopus 로고
    • In the DFT supercell calculations of a pristine graphene, such folding leads to the doubling of branches with linear dispersion; i.e., two sets of bands (each set includes one conduction and one valence band) with identical gapless dispersion are present at the Γ point (the Dirac point). An introduction of the atomic vacancy breaks the degeneracy between the two sets of bands. The details of the new band structure depend on the exact atomic composition of the vacancy. For the V(Equation presented) complex, one set of bands forms the bottommost conduction and topmost valence bands with a small gap of ∼0.05 eV at the Γ point, whereas the other set of bands strongly hybridizes with the nonbonding π state, resulting in the opening of a relatively large band gap of ∼0.6 eV in Fig. 6(c). For the V(Equation presented) complex, one set of bands remains intact and the other shows a gap opening of ∼0.2 eV in Fig. 7(c)
    • In the DFT supercell calculations of a pristine graphene, such folding leads to the doubling of branches with linear dispersion; i.e., two sets of bands (each set includes one conduction and one valence band) with identical gapless dispersion are present at the Γ point (the Dirac point). An introduction of the atomic vacancy breaks the degeneracy between the two sets of bands. The details of the new band structure depend on the exact atomic composition of the vacancy. For the V(Equation presented) complex, one set of bands forms the bottommost conduction and topmost valence bands with a small gap of ∼0.05 eV at the Γ point, whereas the other set of bands strongly hybridizes with the nonbonding π state, resulting in the opening of a relatively large band gap of ∼0.6 eV in Fig. 6(c). For the V(Equation presented) complex, one set of bands remains intact and the other shows a gap opening of ∼0.2 eV in Fig. 7(c).
  • 43
    • 0037367130 scopus 로고    scopus 로고
    • PLRBAQ 0556-2805 10.1103/PhysRevB.67.092406
    • K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003). PLRBAQ 0556-2805 10.1103/PhysRevB.67.092406
    • (2003) Phys. Rev. B , vol.67 , pp. 092406
    • Kusakabe, K.1    Maruyama, M.2
  • 48
    • 78649608237 scopus 로고    scopus 로고
    • PPCPFQ 1463-9076 10.1039/c0cp01009j
    • D. W. Boukhvalov, Phys. Chem. Chem. Phys. 12, 15367 (2010). PPCPFQ 1463-9076 10.1039/c0cp01009j
    • (2010) Phys. Chem. Chem. Phys. , vol.12 , pp. 15367
    • Boukhvalov, D.W.1
  • 50
    • 84899744443 scopus 로고    scopus 로고
    • Here, we define the false ground state as the second-most-stable state among stable configurations found.
    • Here, we define the false ground state as the second-most-stable state among stable configurations found.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.