-
3
-
-
33847768178
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.75.125408
-
O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007). PLRBAQ 0556-2805 10.1103/PhysRevB.75.125408
-
(2007)
Phys. Rev. B
, vol.75
, pp. 125408
-
-
Yazyev, O.V.1
Helm, L.2
-
4
-
-
47749146955
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.037203
-
O. V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.037203
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 037203
-
-
Yazyev, O.V.1
-
5
-
-
84865228556
-
-
NJOPFM 1367-2630 10.1088/1367-2630/14/8/083004
-
B. R. K. Nanda, M. Sherafati, Z. S. Popovic, and S. Satpathy, New J. Phys. 14, 083004 (2012). NJOPFM 1367-2630 10.1088/1367-2630/14/8/083004
-
(2012)
New J. Phys.
, vol.14
, pp. 083004
-
-
Nanda, B.R.K.1
Sherafati, M.2
Popovic, Z.S.3
Satpathy, S.4
-
7
-
-
77950857180
-
-
RPPHAG 0034-4885 10.1088/0034-4885/73/5/056501
-
O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010). RPPHAG 0034-4885 10.1088/0034-4885/73/5/056501
-
(2010)
Rep. Prog. Phys.
, vol.73
, pp. 056501
-
-
Yazyev, O.V.1
-
8
-
-
84861442131
-
-
RPPHAG 0034-4885 10.1088/0034-4885/75/6/062501
-
H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, Rep. Prog. Phys. 75, 062501 (2012). RPPHAG 0034-4885 10.1088/0034-4885/75/6/062501
-
(2012)
Rep. Prog. Phys.
, vol.75
, pp. 062501
-
-
Terrones, H.1
Lv, R.2
Terrones, M.3
Dresselhaus, M.S.4
-
9
-
-
0032179596
-
-
SUSCAS 0039-6028 10.1016/S0039-6028(98)00622-0
-
K. F. Kelly and N. J. Halas, Surf. Sci. 416, 1085 (1998). SUSCAS 0039-6028 10.1016/S0039-6028(98)00622-0
-
(1998)
Surf. Sci.
, vol.416
, pp. 1085
-
-
Kelly, K.F.1
Halas, N.J.2
-
10
-
-
28644447911
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.71.153403
-
P. Ruffieux, M. Melle-Franco, O. Groning, M. Bielmann, F. Zerbetto, and P. Groning, Phys. Rev. B 71, 153403 (2005). PLRBAQ 0556-2805 10.1103/PhysRevB.71.153403
-
(2005)
Phys. Rev. B
, vol.71
, pp. 153403
-
-
Ruffieux, P.1
Melle-Franco, M.2
Groning, O.3
Bielmann, M.4
Zerbetto, F.5
Groning, P.6
-
11
-
-
77749314501
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.104.096804
-
M. M. Ugeda, I. Brihuega, F. Guinea, and J. M. Gomez-Rodriguez, Phys. Rev. Lett. 104, 096804 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.096804
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 096804
-
-
Ugeda, M.M.1
Brihuega, I.2
Guinea, F.3
Gomez-Rodriguez, J.M.4
-
12
-
-
78149248214
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.82.153414
-
T. Kondo, Y. Honma, J. Oh, T. Machida, and J. Nakamura, Phys. Rev. B 82, 153414 (2010). PLRBAQ 0556-2805 10.1103/PhysRevB.82.153414
-
(2010)
Phys. Rev. B
, vol.82
, pp. 153414
-
-
Kondo, T.1
Honma, Y.2
Oh, J.3
Machida, T.4
Nakamura, J.5
-
13
-
-
84858014930
-
-
(R). PLRBAQ 0556-2805 10.1103/PhysRevB.85.121402
-
M. M. Ugeda, I. Brihuega, F. Hiebel, P. Mallet, J.-Y. Veuillen, J. M. Gómez-Ródriguez, and F. Ynduráin, Phys. Rev. B 85, 121402 (R) (2012). PLRBAQ 0556-2805 10.1103/PhysRevB.85.121402
-
(2012)
Phys. Rev. B
, vol.85
, pp. 121402
-
-
Ugeda, M.M.1
Brihuega, I.2
Hiebel, F.3
Mallet, P.4
Veuillen, J.-Y.5
Gómez-Ródriguez, J.M.6
Ynduráin, F.7
-
14
-
-
4344607594
-
-
10.1038/nature02817
-
A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature 430, 870 (2004). 10.1038/nature02817
-
(2004)
Nature
, vol.430
, pp. 870
-
-
Hashimoto, A.1
Suenaga, K.2
Gloter, A.3
Urita, K.4
Iijima, S.5
-
15
-
-
57749090769
-
-
10.1021/nl801386m
-
J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008). 10.1021/nl801386m
-
(2008)
Nano Lett.
, vol.8
, pp. 3582
-
-
Meyer, J.C.1
Kisielowski, C.2
Erni, R.3
Rossell, M.D.4
Crommie, M.F.5
Zettl, A.6
-
16
-
-
79959921150
-
-
10.1038/nphys1962
-
J.-H. Chen, L. Li, W. G. Cullen, E. D. Williams, and M. S. Fuhrer, Nat. Phys. 7, 535 (2011). 10.1038/nphys1962
-
(2011)
Nat. Phys.
, vol.7
, pp. 535
-
-
Chen, J.-H.1
Li, L.2
Cullen, W.G.3
Williams, E.D.4
Fuhrer, M.S.5
-
17
-
-
84857783670
-
-
10.1038/nphys2183
-
R. R. Nair, M. Sepioni, I. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva, Nat. Phys. 8, 199 (2012). 10.1038/nphys2183
-
(2012)
Nat. Phys.
, vol.8
, pp. 199
-
-
Nair, R.R.1
Sepioni, M.2
Tsai, I.3
Lehtinen, O.4
Keinonen, J.5
Krasheninnikov, A.V.6
Thomson, T.7
Geim, A.K.8
Grigorieva, I.V.9
-
18
-
-
50649120084
-
-
10.1103/PhysRevLett.101.096402
-
T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. 101, 096402 (2008). 10.1103/PhysRevLett.101.096402
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 096402
-
-
Wassmann, T.1
Seitsonen, A.P.2
Saitta, A.M.3
Lazzeri, M.4
Mauri, F.5
-
19
-
-
84873644714
-
-
10.1021/ja311099k
-
L. Talirz, H. Söde, J. Cai, P. Ruffieux, S. Blankenburg, R. Jafaar, R. Berger, X. Feng, K. Müllen, D. Passerone, R. Fasel, and C. A. Pignedoli, J. Am. Chem. Soc. 135, 2060 (2013). 10.1021/ja311099k
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 2060
-
-
Talirz, L.1
Söde, H.2
Cai, J.3
Ruffieux, P.4
Blankenburg, S.5
Jafaar, R.6
Berger, R.7
Feng, X.8
Müllen, K.9
Passerone, D.10
Fasel, R.11
Pignedoli, C.A.12
-
20
-
-
84872863401
-
-
10.1021/nn303730v
-
X. Zhang, O. V. Yazyev, J. Feng, L. Xie, C. Tao, Y. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, ACS Nano 7, 198 (2013). 10.1021/nn303730v
-
(2013)
ACS Nano
, vol.7
, pp. 198
-
-
Zhang, X.1
Yazyev, O.V.2
Feng, J.3
Xie, L.4
Tao, C.5
Chen, Y.6
Jiao, L.7
Pedramrazi, Z.8
Zettl, A.9
Louie, S.G.10
Dai, H.11
Crommie, M.F.12
-
21
-
-
84875353967
-
-
10.1103/PhysRevB.87.115427
-
M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, and T. Enoki, Phys. Rev. B 87, 115427 (2013). 10.1103/PhysRevB.87.115427
-
(2013)
Phys. Rev. B
, vol.87
, pp. 115427
-
-
Ziatdinov, M.1
Fujii, S.2
Kusakabe, K.3
Kiguchi, M.4
Mori, T.5
Enoki, T.6
-
22
-
-
19744380702
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.187202
-
P. O. Lehtinen, A. S. Foster, Y. Ma, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett. 93, 187202 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.187202
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 187202
-
-
Lehtinen, P.O.1
Foster, A.S.2
Ma, Y.3
Krasheninnikov, A.V.4
Nieminen, R.M.5
-
23
-
-
84863328690
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.85.245443
-
J. J. Palacios and F. Ynduráin, Phys. Rev. B 85, 245443 (2012). PLRBAQ 0556-2805 10.1103/PhysRevB.85.245443
-
(2012)
Phys. Rev. B
, vol.85
, pp. 245443
-
-
Palacios, J.J.1
Ynduráin, F.2
-
24
-
-
84876179089
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.87.165401
-
Z. Hou, X. Wang, T. Ikeda, K. Terakura, M. Oshima, and M. A. Kakimoto, Phys. Rev. B 87, 165401 (2013). PLRBAQ 0556-2805 10.1103/PhysRevB.87.165401
-
(2013)
Phys. Rev. B
, vol.87
, pp. 165401
-
-
Hou, Z.1
Wang, X.2
Ikeda, T.3
Terakura, K.4
Oshima, M.5
Kakimoto, M.A.6
-
25
-
-
26144450583
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.23.5048
-
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). PLRBAQ 0556-2805 10.1103/PhysRevB.23.5048
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5048
-
-
Perdew, J.P.1
Zunger, A.2
-
26
-
-
20544463457
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.41.7892
-
D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). PLRBAQ 0556-2805 10.1103/PhysRevB.41.7892
-
(1990)
Phys. Rev. B
, vol.41
, pp. 7892
-
-
Vanderbilt, D.1
-
27
-
-
70349568754
-
-
10.1088/0953-8984/21/39/395502
-
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, J. Phys. Condens. Matter 21, 395502 (2009). 10.1088/0953-8984/21/39/395502
-
(2009)
J. Phys. Condens. Matter
, vol.21
, pp. 395502
-
-
Giannozzi, P.1
Baroni, S.2
Bonini, N.3
Calandra, M.4
Car, R.5
Cavazzoni, C.6
Ceresoli, D.7
Chiarotti, G.L.8
Cococcioni, M.9
Dabo, I.10
Dal Corso, A.11
-
28
-
-
1842816907
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.13.5188
-
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). PLRBAQ 0556-2805 10.1103/PhysRevB.13.5188
-
(1976)
Phys. Rev. B
, vol.13
, pp. 5188
-
-
Monkhorst, H.J.1
Pack, J.D.2
-
29
-
-
0142008382
-
-
CMMSEM 0927-0256 10.1016/S0927-0256(03)00111-3
-
N. Govind, M. Petersen, G. Fitzgerald, D. Smith, and J. Andzelm, Comput. Mater. Sci. 28, 250 (2003). CMMSEM 0927-0256 10.1016/S0927-0256(03)00111-3
-
(2003)
Comput. Mater. Sci.
, vol.28
, pp. 250
-
-
Govind, N.1
Petersen, M.2
Fitzgerald, G.3
Smith, D.4
Andzelm, J.5
-
30
-
-
20144380685
-
-
10.1524/zkri.220.5.567.65075
-
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Kristallogr. 220, 567 (2005). 10.1524/zkri.220.5. 567.65075
-
(2005)
Kristallogr.
, vol.220
, pp. 567
-
-
Clark, S.J.1
Segall, M.D.2
Pickard, C.J.3
Hasnip, P.J.4
Probert, M.I.J.5
Refson, K.6
Payne, M.C.7
-
31
-
-
84879336265
-
-
10.1021/jp4017536
-
S. Goler, C. Coletti, V. Tozzini, V. Piazza, T. Mashoff, F. Beltram, V. Pellegrini, and S. Heun, J. Phys. Chem. C 117, 11506 (2013). 10.1021/jp4017536
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 11506
-
-
Goler, S.1
Coletti, C.2
Tozzini, V.3
Piazza, V.4
Mashoff, T.5
Beltram, F.6
Pellegrini, V.7
Heun, S.8
-
32
-
-
44949116981
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.77.233401
-
F. Dumont, F. Picaud, C. Ramseyer, C. Girardet, Y. Ferro, and A. Allouche, Phys. Rev. B 77, 233401 (2008). PLRBAQ 0556-2805 10.1103/PhysRevB.77. 233401
-
(2008)
Phys. Rev. B
, vol.77
, pp. 233401
-
-
Dumont, F.1
Picaud, F.2
Ramseyer, C.3
Girardet, C.4
Ferro, Y.5
Allouche, A.6
-
33
-
-
84858052478
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.85.125409
-
E. Cockayne, Phys. Rev. B 85, 125409 (2012). PLRBAQ 0556-2805 10.1103/PhysRevB.85.125409
-
(2012)
Phys. Rev. B
, vol.85
, pp. 125409
-
-
Cockayne, E.1
-
34
-
-
84899739885
-
-
The deposition of the significant amount of the clusters of (Equation presented) atoms (cluster mean lateral size ≈ 4 nm) from the filament onto the surface may occur at relatively long exposure times. To minimize this effect in the present experiment
-
The deposition of the significant amount of the clusters of (Equation presented) atoms (cluster mean lateral size ≈ 4 nm) from the filament onto the surface may occur at relatively long exposure times. To minimize this effect in the present experiment, we carefully adjusted the time of hydrogenation for adopted (Equation presented) cracker-surface separation distances. As a result, the average density of (Equation presented) clusters on the surface is less than 1 cluster per 200 × 200 nm(Equation presented). All data on hydrogenated vacancies reported in the paper were obtained sufficiently far from those rare (Equation presented) contaminations. Meanwhile, we have not seen any experimental STM evidence of presence of the single (Equation presented) adatoms after the hydrogenation of the nonsputtered graphite. Thus, we conclude that in our experimental setup, the deposition of (Equation presented) species on the graphite surface can only occur in a form of the atomic clusters. Therefore, the intercalation of (Equation presented) species through the single vacancy that may induce additional strong modifications in the electronic structure of the top graphitic layer is unlikely in the present experiment due to the apparent mismatch in the size.
-
-
-
-
35
-
-
0029391027
-
-
JJAPA5 0021-4922 10.1143/JJAP.34.L1379
-
A. Sutoh, Y. Okada, S. Ohta, and M. Kawabe, Jpn. J. Appl. Phys. 34, 1379 (1995). JJAPA5 0021-4922 10.1143/JJAP.34.L1379
-
(1995)
Jpn. J. Appl. Phys.
, vol.34
, pp. 1379
-
-
Sutoh, A.1
Okada, Y.2
Ohta, S.3
Kawabe, M.4
-
36
-
-
18344373200
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.50.1998
-
J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983). PRLTAO 0031-9007 10.1103/PhysRevLett.50.1998
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 1998
-
-
Tersoff, J.1
Hamann, D.R.2
-
37
-
-
33744607543
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.31.805
-
J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985). PLRBAQ 0556-2805 10.1103/PhysRevB.31.805
-
(1985)
Phys. Rev. B
, vol.31
, pp. 805
-
-
Tersoff, J.1
Hamann, D.R.2
-
38
-
-
2442632961
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.68.144107
-
A. A. El-Barbary, R. H. Telling, C. P. Ewels, M. I. Heggie, and P. R. Briddon, Phys. Rev. B 68, 144107 (2003). PLRBAQ 0556-2805 10.1103/PhysRevB.68. 144107
-
(2003)
Phys. Rev. B
, vol.68
, pp. 144107
-
-
El-Barbary, A.A.1
Telling, R.H.2
Ewels, C.P.3
Heggie, M.I.4
Briddon, P.R.5
-
39
-
-
34247603963
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.75.155438
-
Y. Ferro and A. Allouche, Phys. Rev. B 75, 155438 (2007). PLRBAQ 0556-2805 10.1103/PhysRevB.75.155438
-
(2007)
Phys. Rev. B
, vol.75
, pp. 155438
-
-
Ferro, Y.1
Allouche, A.2
-
40
-
-
84899718768
-
-
In the DFT supercell calculations of a pristine graphene, such folding leads to the doubling of branches with linear dispersion; i.e., two sets of bands (each set includes one conduction and one valence band) with identical gapless dispersion are present at the Γ point (the Dirac point). An introduction of the atomic vacancy breaks the degeneracy between the two sets of bands. The details of the new band structure depend on the exact atomic composition of the vacancy. For the V(Equation presented) complex, one set of bands forms the bottommost conduction and topmost valence bands with a small gap of ∼0.05 eV at the Γ point, whereas the other set of bands strongly hybridizes with the nonbonding π state, resulting in the opening of a relatively large band gap of ∼0.6 eV in Fig. 6(c). For the V(Equation presented) complex, one set of bands remains intact and the other shows a gap opening of ∼0.2 eV in Fig. 7(c)
-
In the DFT supercell calculations of a pristine graphene, such folding leads to the doubling of branches with linear dispersion; i.e., two sets of bands (each set includes one conduction and one valence band) with identical gapless dispersion are present at the Γ point (the Dirac point). An introduction of the atomic vacancy breaks the degeneracy between the two sets of bands. The details of the new band structure depend on the exact atomic composition of the vacancy. For the V(Equation presented) complex, one set of bands forms the bottommost conduction and topmost valence bands with a small gap of ∼0.05 eV at the Γ point, whereas the other set of bands strongly hybridizes with the nonbonding π state, resulting in the opening of a relatively large band gap of ∼0.6 eV in Fig. 6(c). For the V(Equation presented) complex, one set of bands remains intact and the other shows a gap opening of ∼0.2 eV in Fig. 7(c).
-
-
-
-
41
-
-
80051863641
-
-
SCIEAS 0036-8075 10.1126/science.1208759
-
L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutiérrez, S. P. Chockalingam, C. J. Arguello, L. Pálová, D. Nordlund, Science 333, 999 (2011). SCIEAS 0036-8075 10.1126/science.1208759
-
(2011)
Science
, vol.333
, pp. 999
-
-
Zhao, L.1
He, R.2
Rim, K.T.3
Schiros, T.4
Kim, K.S.5
Zhou, H.6
Gutiérrez, C.7
Chockalingam, S.P.8
Arguello, C.J.9
Pálová, L.10
Nordlund, D.11
-
42
-
-
84871776139
-
-
10.1038/srep00983
-
H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. Castro Neto, and A. T. Shen Wee, Sci. Rep. 2, 983 (2012). 10.1038/srep00983
-
(2012)
Sci. Rep.
, vol.2
, pp. 983
-
-
Huang, H.1
Wei, D.2
Sun, J.3
Wong, S.L.4
Feng, Y.P.5
Castro Neto, A.H.6
Shen Wee, A.T.7
-
43
-
-
0037367130
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.67.092406
-
K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003). PLRBAQ 0556-2805 10.1103/PhysRevB.67.092406
-
(2003)
Phys. Rev. B
, vol.67
, pp. 092406
-
-
Kusakabe, K.1
Maruyama, M.2
-
45
-
-
0000781318
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.54.17954
-
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996). PLRBAQ 0556-2805 10.1103/PhysRevB.54.17954
-
(1996)
Phys. Rev. B
, vol.54
, pp. 17954
-
-
Nakada, K.1
Fujita, M.2
Dresselhaus, G.3
Dresselhaus, M.S.4
-
46
-
-
33344458266
-
-
PLRBAQ 0556-2805 10.1103/PhysRevB.71.193406
-
Y. Kobayashi, K. I. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Phys. Rev. B 71, 193406 (2005). PLRBAQ 0556-2805 10.1103/PhysRevB.71.193406
-
(2005)
Phys. Rev. B
, vol.71
, pp. 193406
-
-
Kobayashi, Y.1
Fukui, K.I.2
Enoki, T.3
Kusakabe, K.4
Kaburagi, Y.5
-
48
-
-
78649608237
-
-
PPCPFQ 1463-9076 10.1039/c0cp01009j
-
D. W. Boukhvalov, Phys. Chem. Chem. Phys. 12, 15367 (2010). PPCPFQ 1463-9076 10.1039/c0cp01009j
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, pp. 15367
-
-
Boukhvalov, D.W.1
-
49
-
-
38349118354
-
-
10.1021/jp074920g
-
L. Chen, A. C. Cooper, G. P. Pez, and H. Cheng, J. Phys. Chem. C 111, 18995 (2007). 10.1021/jp074920g
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 18995
-
-
Chen, L.1
Cooper, A.C.2
Pez, G.P.3
Cheng, H.4
-
50
-
-
84899744443
-
-
Here, we define the false ground state as the second-most-stable state among stable configurations found.
-
Here, we define the false ground state as the second-most-stable state among stable configurations found.
-
-
-
|