메뉴 건너뛰기




Volumn 41, Issue 13, 2014, Pages 5972-5983

Efficient classification using parallel and scalable compressed model and its application on intrusion detection

Author keywords

Classification; Compressed model; Intrusion detection; MapReduce; Parallelization

Indexed keywords

INTRUSION DETECTION; MULTIPROCESSING SYSTEMS;

EID: 84899721363     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.04.009     Document Type: Article
Times cited : (39)

References (50)
  • 1
    • 84879968733 scopus 로고    scopus 로고
    • Optimized intrusion detection mechanism using soft computing techniques
    • I. Ahmad, A. Abdullah, and A. Alghamdi et al. Optimized intrusion detection mechanism using soft computing techniques Telecommunication Systems 2011 1 9
    • (2011) Telecommunication Systems , pp. 1-9
    • Ahmad, I.1    Abdullah, A.2    Alghamdi, A.3
  • 4
    • 79151484606 scopus 로고    scopus 로고
    • Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset
    • V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset Expert Systems with Applications 38 5 2011 5947 5957
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 5947-5957
    • Bolón-Canedo, V.1    Sánchez-Maroño, N.2    Alonso-Betanzos, A.3
  • 7
    • 84883390736 scopus 로고    scopus 로고
    • A signal processing view on packet sampling and anomaly detection
    • Daniela, B., Kavé, S., & Margin, M. (2010). A signal processing view on packet sampling and anomaly detection. In IEEE INFOCOM (pp. 713-721).
    • (2010) IEEE INFOCOM , pp. 713-721
    • Daniela, B.1    Kavé, S.2    Margin, M.3
  • 8
    • 80051793908 scopus 로고    scopus 로고
    • Data preprocessing for anomaly based network intrusion detection: A review
    • J.J. Davis, and A.J. Clark Data preprocessing for anomaly based network intrusion detection: A review Computers & Security 30 6 2011 353 375
    • (2011) Computers & Security , vol.30 , Issue.6 , pp. 353-375
    • Davis, J.J.1    Clark, A.J.2
  • 9
    • 79960556588 scopus 로고    scopus 로고
    • Alert correlation in collaborative intelligent intrusion detection systems - A survey
    • H.T. Elshoush, and I.M. Osman Alert correlation in collaborative intelligent intrusion detection systems - A survey Applied Soft Computing 11 7 2011 4349 4365
    • (2011) Applied Soft Computing , vol.11 , Issue.7 , pp. 4349-4365
    • Elshoush, H.T.1    Osman, I.M.2
  • 10
    • 34250185435 scopus 로고    scopus 로고
    • Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
    • K.M. Faraoun, and A. Boukelif Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions International Journal of Computational Intelligence 3 2 2006 161 168
    • (2006) International Journal of Computational Intelligence , vol.3 , Issue.2 , pp. 161-168
    • Faraoun, K.M.1    Boukelif, A.2
  • 11
    • 78651535903 scopus 로고    scopus 로고
    • Anomaly network intrusion detection based on improved self adaptive bayesian algorithm
    • D.M. Farid, and M.Z. Rahman Anomaly network intrusion detection based on improved self adaptive bayesian algorithm Journal of Computers 5 1 2010 23 31
    • (2010) Journal of Computers , vol.5 , Issue.1 , pp. 23-31
    • Farid, D.M.1    Rahman, M.Z.2
  • 12
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B.J. Frey, and D. Dueck Clustering by passing messages between data points Science 315 5814 2007 972 976
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 14
    • 84899758822 scopus 로고    scopus 로고
    • Hadoop, (2014)
    • Hadoop, (2014). http://hadoop.apache.org.
  • 15
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte Very simple classification rules perform well on most commonly used datasets Machine Learning 11 1 1993 63 90
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-90
    • Holte, R.C.1
  • 16
    • 84890340152 scopus 로고    scopus 로고
    • Building scalable distributed intrusion detection systems based on the mapreduce framework
    • M.D. Holtz, B.M. David, and R.T. de Sousa Júnior Building scalable distributed intrusion detection systems based on the mapreduce framework Revista Telecomunicacoes 2 2011 22 31
    • (2011) Revista Telecomunicacoes , Issue.2 , pp. 22-31
    • Holtz, M.D.1    David, B.M.2    De Sousa Júnior, R.T.3
  • 17
    • 77956613687 scopus 로고    scopus 로고
    • A novel intrusion detection system based on hierarchical clustering and support vector machines
    • S.J. Horng, M.Y. Su, and Y.H. Chen et al. A novel intrusion detection system based on hierarchical clustering and support vector machines Expert systems with Applications 38 1 2011 306 313
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 306-313
    • Horng, S.J.1    Su, M.Y.2    Chen, Y.H.3
  • 18
    • 84899727467 scopus 로고    scopus 로고
    • Information and Computer Science of University of California, (1999)
    • Information and Computer Science of University of California, (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
  • 20
    • 82255175861 scopus 로고    scopus 로고
    • A differentiated one-class classification method with applications to intrusion detection[J]
    • I. Kang, M.K. Jeong, and D. Kong A differentiated one-class classification method with applications to intrusion detection[J] Expert Systems with Applications 39 4 2012 3899 3905
    • (2012) Expert Systems with Applications , vol.39 , Issue.4 , pp. 3899-3905
    • Kang, I.1    Jeong, M.K.2    Kong, D.3
  • 22
    • 84876684040 scopus 로고    scopus 로고
    • Finding exemplars in dense data with affinity propagation on clusters of GPUs
    • M. Kurdziel, and K. Boryczko Finding exemplars in dense data with affinity propagation on clusters of GPUs Concurrency and Computation: Practice and Experience 25 8 2013 1137 1152
    • (2013) Concurrency and Computation: Practice and Experience , vol.25 , Issue.8 , pp. 1137-1152
    • Kurdziel, M.1    Boryczko, K.2
  • 24
    • 81855197007 scopus 로고    scopus 로고
    • An efficient intrusion detection system based on support vector machines and gradually feature removal method
    • Y. Li, J. Xia, and S. Zhang et al. An efficient intrusion detection system based on support vector machines and gradually feature removal method Expert Systems with Applications 39 1 2012 424 430
    • (2012) Expert Systems with Applications , vol.39 , Issue.1 , pp. 424-430
    • Li, Y.1    Xia, J.2    Zhang, S.3
  • 27
    • 84893433050 scopus 로고    scopus 로고
    • A novel intrusion detection system based on feature generation with visualization strategy
    • B. Luo, and J. Xia A novel intrusion detection system based on feature generation with visualization strategy Expert Systems with Applications 41 9 2014 4139 4147
    • (2014) Expert Systems with Applications , vol.41 , Issue.9 , pp. 4139-4147
    • Luo, B.1    Xia, J.2
  • 29
    • 84855246268 scopus 로고    scopus 로고
    • Adaptive false alarm filter using machine learning in intrusion detection
    • Springer Berlin, Heidelberg pp. 573-584
    • Y. Meng Adaptive false alarm filter using machine learning in intrusion detection Practical Applications of Intelligent Systems 2012 Springer Berlin, Heidelberg pp. 573-584
    • (2012) Practical Applications of Intelligent Systems
    • Meng, Y.1
  • 31
    • 26444436687 scopus 로고    scopus 로고
    • Using adaptive alert classification to reduce false positives in intrusion detection
    • Springer Berlin, Heidelberg pp. 102-124
    • T. Pietraszek Using adaptive alert classification to reduce false positives in intrusion detection Recent Advances in Intrusion Detection 2004 Springer Berlin, Heidelberg pp. 102-124
    • (2004) Recent Advances in Intrusion Detection
    • Pietraszek, T.1
  • 33
    • 84899750288 scopus 로고    scopus 로고
    • Improving the intrusion detection systems performance by correlation as a sample selection method
    • R. Rouhi, F. Keynia, and M. Amiri Improving the intrusion detection systems performance by correlation as a sample selection method Journal of Computer Sciences and Applications 1 3 2013 33 38
    • (2013) Journal of Computer Sciences and Applications , vol.1 , Issue.3 , pp. 33-38
    • Rouhi, R.1    Keynia, F.2    Amiri, M.3
  • 34
    • 84887447695 scopus 로고    scopus 로고
    • The family of MapReduce and large-scale data processing systems
    • S. Sakr, A. Liu, and A.G. Fayoumi The family of MapReduce and large-scale data processing systems ACM Computing Surveys (CSUR) 46 1 2013 11
    • (2013) ACM Computing Surveys (CSUR) , vol.46 , Issue.1 , pp. 11
    • Sakr, S.1    Liu, A.2    Fayoumi, A.G.3
  • 35
    • 84894195569 scopus 로고    scopus 로고
    • Selecting features for anomaly intrusion detection: A novel method using fuzzy c means and decision tree classification
    • Springer International Publishing pp. 299-307
    • J. Song, Z. Zhu, and P. Scully et al. Selecting features for anomaly intrusion detection: A novel method using fuzzy c means and decision tree classification Cyberspace Safety and Security 2013 Springer International Publishing pp. 299-307
    • (2013) Cyberspace Safety and Security
    • Song, J.1    Zhu, Z.2    Scully, P.3
  • 36
    • 71649091715 scopus 로고    scopus 로고
    • Reducing false positives in intrusion detection systems
    • G.P. Spathoulas, and S.K. Katsikas Reducing false positives in intrusion detection systems Computers & Security 29 1 2010 35 44
    • (2010) Computers & Security , vol.29 , Issue.1 , pp. 35-44
    • Spathoulas, G.P.1    Katsikas, S.K.2
  • 37
    • 19944364877 scopus 로고    scopus 로고
    • Feature duduction and ensemble design of intrusion detection systems
    • C. Srilatha, A. Ajith, and P.T. Johnson Feature duduction and ensemble design of intrusion detection systems Computer & Security - COMPSEC 24 4 2005 295 307
    • (2005) Computer & Security - COMPSEC , vol.24 , Issue.4 , pp. 295-307
    • Srilatha, C.1    Ajith, A.2    Johnson, P.T.3
  • 39
    • 84899757846 scopus 로고    scopus 로고
    • Incremental affinity propagation clustering based on message passing
    • L. Sun, and C. Guo Incremental affinity propagation clustering based on message passing IEEE Transactions on Knowledge and Data Engineering 99 1 2014 1 10
    • (2014) IEEE Transactions on Knowledge and Data Engineering , vol.99 , Issue.1 , pp. 1-10
    • Sun, L.1    Guo, C.2
  • 40
    • 84899707784 scopus 로고    scopus 로고
    • The 3rd Cybersecurity Data Mining Competition, (2012)
    • The 3rd Cybersecurity Data Mining Competition, (2012). http://www.csmining.org/cdmc2012/.
  • 41
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbors approach to intrusion detection
    • C.F. Tsai, and C.Y. Lin A triangle area based nearest neighbors approach to intrusion detection Pattern Recognition 43 1 2010 222 229
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 222-229
    • Tsai, C.F.1    Lin, C.Y.2
  • 45
    • 78650860002 scopus 로고    scopus 로고
    • Abstracting audit data for lightweight intrusion detection
    • Springer Berlin, Heidelberg pp. 201-215
    • W. Wang, X. Zhang, and G. Pitsilis Abstracting audit data for lightweight intrusion detection Information systems security 2011 Springer Berlin, Heidelberg pp. 201-215
    • (2011) Information Systems Security
    • Wang, W.1    Zhang, X.2    Pitsilis, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.