메뉴 건너뛰기




Volumn 46, Issue 1, 2013, Pages

The family of mapreduce and large-scale data processing systems

Author keywords

Big data; Large scale data processing; MapReduce

Indexed keywords

BIG DATUM; COMPUTING ARCHITECTURE; DECLARATIVE PROGRAMMING; FUTURE RESEARCH DIRECTIONS; INDUSTRIAL COMMUNITIES; LARGE-SCALE DATA PROCESSING; MAP-REDUCE; PARALLEL APPLICATION;

EID: 84887447695     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2522968.2522979     Document Type: Article
Times cited : (133)

References (134)
  • 1
    • 63449120095 scopus 로고    scopus 로고
    • SW-store: A vertically partitioned dbms for semantic web data management
    • ABADI, D. J., MARCUS, A., MADDEN, S., AND HOLLENBACH, K. 2009. SW-store: A vertically partitioned dbms for semantic web data management. VLDB J. 18, 2, 385-406.
    • (2009) VLDB J , vol.18 , Issue.2 , pp. 385-406
    • Abadi, D.J.1    Marcus, A.2    Madden, S.3    Hollenbach, K.4
  • 2
    • 79957809015 scopus 로고    scopus 로고
    • HadoopDB: An architectural hybrid of mapreduce and dbms technologies for analytical workloads
    • ABOUZEID, A., BAJDA-PAWLIKOWSKI, K., ABADI, D., RASIN, A., AND SILBERSCHATZ, A. 2009. HadoopDB: An architectural hybrid of mapreduce and dbms technologies for analytical workloads. Proc. VLDB Endow. 2, 1, 922-933.
    • (2009) Proc. VLDB Endow , vol.2 , Issue.1 , pp. 922-933
    • Abouzeid, A.1    Bajda-Pawlikowski, K.2    Abadi, D.3    Rasin, A.4    Silberschatz, A.5
  • 6
    • 79960930577 scopus 로고    scopus 로고
    • Optimizing multiway joins in a map-reduce environment
    • AFRATI, F. N. AND ULLMAN, J. D. 2011. Optimizing multiway joins in a map-reduce environment. IEEE Trans. Knowl. Data Engin. 23, 9, 1282-1298.
    • (2011) IEEE Trans. Knowl. Data Engin , vol.23 , Issue.9 , pp. 1282-1298
    • Afrati, F.N.1    Ullman, J.D.2
  • 14
    • 32044446057 scopus 로고    scopus 로고
    • Petascale computational systems
    • BELL, G., GRAY, J., AND SZALAY, A. S. 2006. Petascale computational systems. IEEE Comput. 39, 1, 110-112.
    • (2006) IEEE Comput , vol.39 , Issue.1 , pp. 110-112
    • Bell, G.1    Gray, J.2    Szalay, A.S.3
  • 23
    • 79956351190 scopus 로고    scopus 로고
    • HaLoop: Efficient iterative data processing on large clusters
    • BU, Y., HOWE, B., BALAZINSKA, M., AND ERNST, M. 2010. HaLoop: Efficient iterative data processing on large clusters. Proc. VLDB Endow. 3, 1, 285-296.
    • (2010) Proc. VLDB Endow , vol.3 , Issue.1 , pp. 285-296
    • Bu, Y.1    Howe, B.2    Balazinska, M.3    Ernst, M.4
  • 31
    • 70849084498 scopus 로고    scopus 로고
    • Evita raced: Metacompilation for declarative networks
    • CONDIE, T., CHU, D., HELLERSTEIN, J. M., AND MANIATIS, P. 2008. Evita raced: Metacompilation for declarative networks. Proc. VLDB Endow. 1, 1, 1153-1165.
    • (2008) Proc. VLDB Endow , vol.1 , Issue.1 , pp. 1153-1165
    • Condie, T.1    Chu, D.2    Hellerstein, J.M.3    Maniatis, P.4
  • 37
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • DEAN, J. AND GHEMAWAT, S. 2008. MapReduce: Simplified data processing on large clusters. Comm. ACM 51, 1, 107-113.
    • (2008) Comm ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 38
    • 73649114265 scopus 로고    scopus 로고
    • MapReduce: A flexible data processing tool
    • DEAN, J. AND GHEMAWAT, S. 2010. MapReduce: A flexible data processing tool. Comm. ACM 53, 1, 72-77.
    • (2010) Comm ACM , vol.53 , Issue.1 , pp. 72-77
    • Dean, J.1    Ghemawat, S.2
  • 39
    • 0026870271 scopus 로고
    • Parallel database systems: The future of high performance database systems
    • DEWITT, D. J. AND GRAY, J. 1992. Parallel database systems: The future of high performance database systems. Comm. ACM 35, 6, 85-98.
    • (1992) Comm ACM , vol.35 , Issue.6 , pp. 85-98
    • Dewitt, D.J.1    Gray, J.2
  • 40
    • 80053521271 scopus 로고    scopus 로고
    • Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing)
    • DITTRICH, J.,QUIANE-RUIZ, J., JINDAL, A.,KARGIN, Y., SETTY, V., AND SCHAD, J. 2010. Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing). Proc. VLDB Endow. 3, 1, 518-529.
    • (2010) Proc. VLDB Endow , vol.3 , Issue.1 , pp. 518-529
    • Dittrich, J.1    Quiane-Ruiz, J.2    Jindal, A.3    Kargin, Y.4    Setty, V.5    Schad, J.6
  • 42
    • 84862655513 scopus 로고    scopus 로고
    • ReStore: Reusing results of mapreduce jobs
    • ELGHANDOUR, I. AND ABOULNAGA, A. 2012a. ReStore: Reusing results of mapreduce jobs. Proc. VLDB Endow. 5, 6, 586-597.
    • (2012) Proc. VLDB Endow , vol.5 , Issue.6 , pp. 586-597
    • Elghandour, I.1    Aboulnaga, A.2
  • 47
    • 81055146169 scopus 로고    scopus 로고
    • Column-oriented storage techniques for mapreduce
    • FLORATOU, A., PATEL, J. M., SHEKITA, E. J., AND TATA, S. 2011. Column-oriented storage techniques for mapreduce. Proc. VLDB Endow. 4, 7, 419-429.
    • (2011) Proc. VLDB Endow , vol.4 , Issue.7 , pp. 419-429
    • Floratou, A.1    Patel, J.M.2    Shekita, E.J.3    Tata, S.4
  • 48
    • 77954889500 scopus 로고    scopus 로고
    • SQL/MapReduce: A practical approach to self-describing, polymorphic, and parallelizable user-defined functions
    • FRIEDMAN, E.,PAWLOWSKI, P., AND CIESLEWICZ, J. 2009. SQL/MapReduce: A practical approach to self-describing, polymorphic, and parallelizable user-defined functions. Proc. VLDB Endow. 2, 2, 1402-1413.
    • (2009) Proc. VLDB Endow , vol.2 , Issue.2 , pp. 1402-1413
    • Friedman, E.1    Pawlowski, P.2    Cieslewicz, J.3
  • 54
    • 0035658039 scopus 로고    scopus 로고
    • Answering queries using views: A survey
    • HALEVY, A. Y. 2001. Answering queries using views: A survey. VLDB J. 10, 4, 270-294.
    • (2001) VLDB J , vol.10 , Issue.4 , pp. 270-294
    • Halevy, A.Y.1
  • 57
    • 82155174846 scopus 로고    scopus 로고
    • Profiling, what-if analysis, and cost-based optimization of mapreduce programs
    • HERODOTOU, H. AND BABU, S. 2011. Profiling, what-if analysis, and cost-based optimization of mapreduce programs. Proc. VLDB Endow. 4, 11, 1111-1122.
    • (2011) Proc. VLDB Endow , vol.4 , Issue.11 , pp. 1111-1122
    • Herodotou, H.1    Babu, S.2
  • 58
    • 84863740820 scopus 로고    scopus 로고
    • Mapreduce programming and cost-based optimization crossing this chasm with starfish
    • HERODOTOU, H.,DONG, F., AND BABU, S. 2011a. Mapreduce programming and cost-based optimization crossing this chasm with starfish. Proc. VLDB Endow. 4, 12, 1446-1449.
    • (2011) Proc. VLDB Endow , vol.4 , Issue.12 , pp. 1446-1449
    • Herodotou, H.1    Dong, F.2    Babu, S.3
  • 60
    • 77955510132 scopus 로고    scopus 로고
    • The fourth paradigm: Data-intensive scientific discovery
    • HEY, T., TANSLEY, S., AND TOLLE, K., EDS. 2009. The fourth paradigm: Data-intensive scientific discovery. Microsoft Research. http://research. microsoft.com/en-us/collaboration/fourthparadigm/4th paradigm book complete lr.pdf.
    • (2009) Microsoft Research
    • Hey, T.1    Tansley, S.2    Tolle, K.3
  • 61
    • 77952642788 scopus 로고    scopus 로고
    • A common substrate for cluster Computing in HotCloud Workshop held in conjunction with the USENIX
    • HINDMAN, B., KONWINSKI, A., ZAHARIA, M., AND STOICA, I. 2009. A common substrate for cluster Computing. In HotCloud Workshop held in conjunction with the USENIX Annual Technical Conference. https://www.usenix.org/legacy/event/ hotcloud09/tech/full papers/hindman.pdf.
    • (2009) Annual Technical Conference
    • Hindman, B.1    Konwinski, A.2    Zaharia, M.3    Stoica, I.4
  • 62
    • 84862700181 scopus 로고    scopus 로고
    • Scalable sparql querying of large rdf graphs
    • HUANG, J., ABADI, D. J., AND REN, K. 2011. Scalable sparql querying of large rdf graphs. Proc. VLDB Endow. 4, 11, 1123-1134.
    • (2011) Proc. VLDB Endow , vol.4 , Issue.11 , pp. 1123-1134
    • Huang, J.1    Abadi, D.J.2    Ren, K.3
  • 65
    • 84863535860 scopus 로고    scopus 로고
    • Automatic optimization for mapreduce programs
    • JAHANI, E., CAFARELLA, M. J., AND RE, C. 2011. Automatic optimization for mapreduce programs. Proc. VLDB Endow. 4, 6, 385-396.
    • (2011) Proc. VLDB Endow , vol.4 , Issue.6 , pp. 385-396
    • Jahani, E.1    Cafarella, M.J.2    Re, C.3
  • 66
    • 81055143288 scopus 로고    scopus 로고
    • The performance of mapreduce: An in-depth study
    • JIANG, D.,OOI, B. C., SHI, L., AND WU, S. 2010. The performance of mapreduce: An in-depth study. Proc. VLDB Endow. 3, 1, 472-483.
    • (2010) Proc. VLDB Endow , vol.3 , Issue.1 , pp. 472-483
    • Jiang, D.1    Ooi, B.C.2    Shi, L.3    Wu, S.4
  • 67
    • 79960904226 scopus 로고    scopus 로고
    • MAP-JOIN-REDUCE: Toward scalable and efficient data analysis on large clusters
    • JIANG, D., TUNG, A. K. H., AND CHEN, G. 2011. MAP-JOIN-REDUCE: Toward scalable and efficient data analysis on large clusters. IEEE Trans. Knowl. Data Engin. 23, 9, 1299-1311.
    • (2011) IEEE Trans. Knowl. Data Engin , vol.23 , Issue.9 , pp. 1299-1311
    • Jiang, D.1    Tung, A.K.H.2    Chen, G.3
  • 75
    • 84863473910 scopus 로고    scopus 로고
    • From sparql to mapreduce: The journey using a nested triplegroup algebra
    • KIM, H., RAVINDRA, P., AND ANYANWU, K. 2011. From sparql to mapreduce: The journey using a nested triplegroup algebra. Proc. VLDB Endow. 4, 12, 1426-1429.
    • (2011) Proc. VLDB Endow , vol.4 , Issue.12 , pp. 1426-1429
    • Kim, H.1    Ravindra, P.2    Anyanwu, K.3
  • 76
    • 84872977079 scopus 로고    scopus 로고
    • Dedoop: Efficient deduplication with hadoop
    • KOLB, L., THOR, A., AND RAHM, E. 2012a. Dedoop: Efficient deduplication with hadoop. Proc. VLDB Endow. 5, 12.
    • (2012) Proc. VLDB Endow , vol.5 , pp. 12
    • Kolb, L.1    Thor, A.2    Rahm, E.3
  • 79
    • 0032058184 scopus 로고    scopus 로고
    • The part-time parliament
    • LAMPORT, L. 1998. The part-time parliament. ACM Trans. Comput. Syst. 16, 2, 133-169.
    • (1998) ACM Trans. Comput. Syst , vol.16 , Issue.2 , pp. 133-169
    • Lamport, L.1
  • 80
    • 84887503345 scopus 로고    scopus 로고
    • LARGE SYNOPTIC SURVE 2013
    • LARGE SYNOPTIC SURVEY. 2013. http://www.lsst.org/.
  • 82
    • 84873155673 scopus 로고    scopus 로고
    • Stubby: A transformation-based optimizer for mapreduce workflows
    • LIM, H., HERODOTOU, H., AND BABU, S. 2012. Stubby: A transformation-based optimizer for mapreduce workflows. Proc. VLDB Endow. 5, 12.
    • (2012) Proc. VLDB Endow , vol.5 , pp. 12
    • Lim, H.1    Herodotou, H.2    Babu, S.3
  • 85
    • 70349310834 scopus 로고    scopus 로고
    • Ad-hoc data processing in the cloud
    • LOGOTHE TIS, D. AND YOCUM, K. 2008. Ad-hoc data processing in the cloud. Proc. VLDB Endow. 1, 2, 1472-1475.
    • (2008) Proc. VLDB Endow , vol.1 , Issue.2 , pp. 1472-1475
    • Logothe Tis, D.1    Yocum, K.2
  • 92
    • 84863758126 scopus 로고    scopus 로고
    • V-smart-join: A scalable mapreduce framework for all-pair similarity joins of multisets and vectors
    • METWALLY, A. AND FALOUTSOS, C. 2012. V-smart-join: A scalable mapreduce framework for all-pair similarity joins of multisets and vectors. Proc. VLDB Endow. 5, 8, 704-715.
    • (2012) Proc. VLDB Endow , vol.5 , Issue.8 , pp. 704-715
    • Metwally, A.1    Faloutsos, C.2
  • 93
    • 84863551232 scopus 로고    scopus 로고
    • Social content matching in mapreduce
    • MORALES, G. F., GIONIS, A., AND SOZIO, M. 2011. Social content matching in mapreduce. Proc. VLDB Endow. 4, 7, 460-469.
    • (2011) Proc. VLDB Endow , vol.4 , Issue.7 , pp. 460-469
    • Morales, G.F.1    Gionis, A.2    Sozio, M.3
  • 97
    • 84859172690 scopus 로고    scopus 로고
    • RDF-3x: A risc-style engine for rdf
    • NEUMANN, T. AND WEIKUM, G. 2008. RDF-3x: A risc-style engine for rdf. Proc. VLDB Endow. 1, 1.
    • (2008) Proc. VLDB Endow , vol.1 , Issue.1
    • Neumann, T.1    Weikum, G.2
  • 101
    • 77955032649 scopus 로고    scopus 로고
    • PLANET: Massively parallel learning of tree ensembles with mapreduce
    • PANDA, B., HERBACH, J., BASU, S., AND BAYARDO, R. J. 2009. PLANET: Massively parallel learning of tree ensembles with mapreduce. Proc. VLDB Endow, 2, 2, 1426-1437.
    • (2009) Proc. VLDB Endow , vol.2 , Issue.2 , pp. 1426-1437
    • Panda, B.1    Herbach, J.2    Basu, S.3    Bayardo, R.J.4
  • 103
    • 37549031376 scopus 로고    scopus 로고
    • Technical perspective: The data center is the computer
    • PATTERSON, D. A. 2008. Technical perspective: The data center is the computer. Comm. ACM 51, 1, 105.
    • (2008) Comm ACM , vol.51 , Issue.1 , pp. 105
    • Patterson, D.A.1
  • 105
    • 30344452311 scopus 로고    scopus 로고
    • Interpreting the data: Parallel analysis with sawzall
    • PIKE, R., DORWARD, S., GRIESEMER, R., AND QUINLAN, S. 2005. Interpreting the data: Parallel analysis with sawzall. Sci. Program. 13, 4, 277-298.
    • (2005) Sci. Program , vol.13 , Issue.4 , pp. 277-298
    • Pike, R.1    Dorward, S.2    Griesemer, R.3    Quinlan, S.4
  • 112
    • 0002291775 scopus 로고
    • The case for shared nothing
    • STONEBRAKER, M. 1986. The case for shared nothing. IEEE Datab. Engin. Bull. 9, 1, 4-9.
    • (1986) IEEE Datab. Engin. Bull , vol.9 , Issue.1 , pp. 4-9
    • Stonebraker, M.1
  • 119
    • 0025467711 scopus 로고
    • A bridging model for parallel computation
    • VALIANT, L. G. 1990. A bridging model for parallel computation. Comm. ACM 33, 8, 103-111.
    • (1990) Comm ACM , vol.33 , Issue.8 , pp. 103-111
    • Valiant, L.G.1
  • 124
  • 132
    • 84862787564 scopus 로고    scopus 로고
    • Imapreduce: A distributed computing framework for iterative computation
    • ZHANG, Y., GAO, Q., GAO, L., AND WANG, C. 2012. IMapReduce: A Distributed Computing Framework for Iterative Computation. J. Grid Comput. 10, 1, 47-68.
    • (2012) J. Grid Comput , vol.10 , Issue.1 , pp. 47-68
    • Zhang, Y.1    Gao, Q.2    Gao, L.3    Wang, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.