메뉴 건너뛰기




Volumn , Issue , 2011, Pages 192-197

Intrusion detection based on K-means clustering and OneR classification

Author keywords

Classification; Clustering; Intrusion Detection System; Machine Learning

Indexed keywords

CLASSIFICATION TECHNIQUE; CLUSTERING; DATA SETS; DETECTION RATES; FALSE ALARMS; INTERCONNECTED NETWORK; INTRUSION DETECTION SYSTEM; INTRUSION DETECTION SYSTEMS; K-MEANS CLUSTERING; MACHINE LEARNING METHODS; MACHINE-LEARNING;

EID: 84856688089     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISIAS.2011.6122818     Document Type: Conference Paper
Times cited : (55)

References (35)
  • 4
    • 1842712339 scopus 로고    scopus 로고
    • A genetic clustering method for intrusion detection
    • DOI 10.1016/j.patcog.2003.09.011, PII S0031320303003935
    • Y. Liu, K. Chen, X. Liao, W. Zhang, A genetic clustering method for intrusion detection, Pattern Recognition 37 (2004) 927-942. (Pubitemid 38473836)
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 927-942
    • Liu, Y.1    Chen, K.2    Liao, X.3    Zhang, W.4
  • 8
    • 1642354876 scopus 로고    scopus 로고
    • KDD-99 Classifier Learning Contest: LLSoft's Results Overview
    • I. Levin, KDD-99 Classifier Learning Contest: LLSoft's Results Overview, SIGKDD Explorations, 1(2000), 67-75.
    • (2000) SIGKDD Explorations , vol.1 , pp. 67-75
    • Levin, I.1
  • 10
    • 34247636165 scopus 로고    scopus 로고
    • Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection
    • DOI 10.1016/j.patcog.2006.12.009, PII S0031320306005218
    • C.H. Tsang, S. Kwong, H. Wang, Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection, Pattern Recognition 40(9) (2007) 2373-2391. (Pubitemid 46669583)
    • (2007) Pattern Recognition , vol.40 , Issue.9 , pp. 2373-2391
    • Tsang, C.-H.1    Kwong, S.2    Wang, H.3
  • 12
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbors approach to intrusion detection
    • C.F. Tsai, C.Y. Lin, A triangle area based nearest neighbors approach to intrusion detection, Pattern Recognition 43(1) (2010) 222-229.
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 222-229
    • Tsai, C.F.1    Lin, C.Y.2
  • 14
    • 15944375471 scopus 로고    scopus 로고
    • Intrusion detection using hierarchical neural networks
    • DOI 10.1016/j.patrec.2004.09.045, PII S0167865504002624
    • C. Zhang, J. Jiang, M. Kamel, Intrusion detection using hierarchical neural network. Pattern Recognition Letters 26(2005) 779-791. (Pubitemid 40430497)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.6 , pp. 779-791
    • Zhang, C.1    Jiang, J.2    Kamel, M.3
  • 15
    • 84941079784 scopus 로고    scopus 로고
    • A new approach to intrusion detection using artificial neural networks and fuzzy clustering
    • G. Wang, J. Hao, J. Ma, L. Huang, A new approach to intrusion detection using artificial neural networks and fuzzy clustering, Expert Systems with Applications 37 (2010) 6225-6232.
    • (2010) Expert Systems with Applications , vol.37 , pp. 6225-6232
    • Wang, G.1    Hao, J.2    Ma, J.3    Huang, L.4
  • 16
    • 58349096877 scopus 로고    scopus 로고
    • Data mining-based intrusion detectors
    • S. Wu, E. Yen, Data mining-based intrusion detectors, Expert Systems with Applications 36(2009) 5605-5612.
    • (2009) Expert Systems with Applications , vol.36 , pp. 5605-5612
    • Wu, S.1    Yen, E.2
  • 18
    • 35548992415 scopus 로고    scopus 로고
    • A parallel genetic local search algorithm for intrusion detection in computer networks
    • DOI 10.1016/j.engappai.2007.02.007, PII S0952197607000206
    • M.S. Abadeh, J. Habibi, Z. Barzegar, M. Sergi, A parallel genetic local search algorithm for intrusion detection in computer networks, Engineering Applications of Artificial Intelligence 20 (2007) 1058-1069. (Pubitemid 350016848)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.8 , pp. 1058-1069
    • Saniee, A.M.1    Habibi, J.2    Barzegar, Z.3    Sergi, M.4
  • 19
    • 33947581868 scopus 로고    scopus 로고
    • Hybrid flexible neural-tree-based intrusion detection systems
    • DOI 10.1002/int.20203
    • Y. Chen, A. Abraham, B. Yang, Hybrid flexible neural-tree-based intrusion detection systems, International Journal of Intelligent Systems 22(2007)337-352. (Pubitemid 46480226)
    • (2007) International Journal of Intelligent Systems , vol.22 , Issue.4 , pp. 337-352
    • Chen, Y.1    Abraham, A.2    Yang, B.3
  • 21
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • L. Khan, M. Awad, B. Thuraisingham, A new intrusion detection system using support vector machines and hierarchical clustering, The VLDB Journal 16 (2007) 507-521.
    • (2007) The VLDB Journal , vol.16 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 22
    • 33847406678 scopus 로고    scopus 로고
    • A hierarchical intrusion detection model based on the PCA neural networks
    • DOI 10.1016/j.neucom.2006.10.146, PII S0925231206004644, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • G. Liu, Z. Yi, S. Yang, A hierarchical intrusion detection model based on the PCA neural networks, Neurocomputing 70 (2007) 1561-1568. (Pubitemid 46336771)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1561-1568
    • Liu, G.1    Yi, Z.2    Yang, S.3
  • 23
    • 33750512162 scopus 로고    scopus 로고
    • Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening
    • DOI 10.1016/j.jnca.2005.06.002, PII S1084804505000433, Network and Information Security: A Computational Intelligence Approach
    • T. Ozyer, R. Alhajj, K. Barker, Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening, Journal of Network and Computer Applications 30 (2007) 99-113. (Pubitemid 44666485)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 99-113
    • Ozyer, T.1    Alhajj, R.2    Barker, K.3
  • 24
    • 33750514606 scopus 로고    scopus 로고
    • Modeling intrusion detection system using hybrid intelligent systems
    • DOI 10.1016/j.jnca.2005.06.003, PII S1084804505000445, Network and Information Security: A Computational Intelligence Approach
    • S. Peddabachigari, A. Abraham, C. Grosan, J. Thomas, Modeling intrusion detection system using hybrid intelligent systems, Journal of Network and Computer Applications 30 (2007) 114-132. (Pubitemid 44666486)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 114-132
    • Peddabachigari, S.1    Abraham, A.2    Grosan, C.3    Thomas, J.4
  • 25
    • 34250801472 scopus 로고    scopus 로고
    • A hybrid machine learning approach to network anomaly detection
    • DOI 10.1016/j.ins.2007.03.025, PII S0020025507001648
    • T. Shon, X. Kovah, J. Moon, A hybrid machine learning approach to network anomaly detection. Information Sciences 177 (2007) 3799-3821. (Pubitemid 46978336)
    • (2007) Information Sciences , vol.177 , Issue.18 , pp. 3799-3821
    • Shon, T.1    Moon, J.2
  • 26
    • 33748619234 scopus 로고    scopus 로고
    • Applying genetic algorithm for classifying anomalous TCP/IP packets
    • DOI 10.1016/j.neucom.2006.01.023, PII S0925231206000907, Brain Inspired Cognitive Systems Selected papers from the 1st International Conference on Brain Inspired Cognitive Systems (BICS 2004)
    • T. Shon, X. Kovah, J. Moon, Applying genetic algorithm for classifying anomalous TCP/IP packets, Neurocomputing 69 (2006) 2429-2433. (Pubitemid 44375533)
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2429-2433
    • Shon, T.1    Kovah, X.2    Moon, J.3
  • 27
    • 43249119791 scopus 로고    scopus 로고
    • An efficient k-means clustering algorithm
    • K.R. Zalik, An efficient k-means clustering algorithm, Pattern Recognition Letter 29 (2008) 1385-1391.
    • (2008) Pattern Recognition Letter , vol.29 , pp. 1385-1391
    • Zalik, K.R.1
  • 29
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holt, Very simple classification rules perform well on most commonly used datasets, Machine Learning 11 (1993) 69-90.
    • (1993) Machine Learning , vol.11 , pp. 69-90
    • Holt, R.C.1
  • 30
    • 0027580356 scopus 로고
    • Very Simple Classification Rules Perform Well on Most Commonly Used Datasets
    • C. Robert Holte., Very Simple Classification Rules Perform Well on Most Commonly Used Datasets, Machine Learning 11(1993)63-91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Robert Holte, C.1
  • 31
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • W. Lee, S. Stolfo, A framework for constructing features and models for intrusion detection systems, ACM Transactions on Information System Security 3(4) (2000) 227-261.
    • (2000) ACM Transactions on Information System Security , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.2
  • 34
    • 40849099949 scopus 로고    scopus 로고
    • Design of multiple level hybrid classifier for intrusion detection system using bayesian clustering and decision tree
    • C. Xiang, P.C. Yong, L.S. Meng, Design of multiple level hybrid classifier for intrusion detection system using bayesian clustering and decision tree, Pattern Recognition Letters 29(2008) 918-924.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 918-924
    • Xiang, C.1    Yong, P.C.2    Meng, L.S.3
  • 35
    • 34447639073 scopus 로고    scopus 로고
    • A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers
    • DOI 10.1016/j.comcom.2007.05.002, PII S0140366407001855
    • A.N. Toosi, M. Kahani, A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers, Computer Communications, 30 (10) (2007) 2201-2212. (Pubitemid 47094963)
    • (2007) Computer Communications , vol.30 , Issue.10 , pp. 2201-2212
    • Toosi, A.N.1    Kahani, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.