메뉴 건너뛰기




Volumn 45, Issue 9, 2014, Pages 1195-1213

Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models

Author keywords

Adaptive neuro fuzzy inference system; artificial neural networks; cation exchange capacity; multiple regression; soil characteristics; soil infiltration

Indexed keywords


EID: 84899715747     PISSN: 00103624     EISSN: 15322416     Source Type: Journal    
DOI: 10.1080/00103624.2013.874029     Document Type: Article
Times cited : (63)

References (41)
  • 3
    • 78650282266 scopus 로고    scopus 로고
    • Modeling water infiltration rate under conventional tillage systems on a clay soil using artificial neural networks
    • Al-Janobi, A. A., M. A. Abdulwahed, and A. A. Khaled, 2010. Modeling water infiltration rate under conventional tillage systems on a clay soil using artificial neural networks. Australian Journal of Basic and Applied Sciences 4:3869-3879.
    • (2010) Australian Journal of Basic and Applied Sciences , vol.4 , pp. 3869-3879
    • Al-Janobi, A.A.1    Abdulwahed, M.A.2    Khaled, A.A.3
  • 6
    • 85104284663 scopus 로고
    • Rate of water intake in the field
    • In: Black et al C. A., editors Madison, Wisc.,: ASA and SSSA
    • Bertrand, A. R. 1965. Rate of water intake in the field. In Methods of soil analysis, part I, 1 ed. C. A. Black et al., 197-209. Madison, Wisc.: ASA and SSSA.
    • (1965) Methods of soil analysis, part I, 1 , pp. 197-209
    • Bertrand, A.R.1
  • 8
    • 0000016988 scopus 로고
    • Determination of exchangeable calcareous soils
    • Carpena, O., A. Lux, and K. Vahtras. 1972. Determination of exchangeable calcareous soils. Soil Science 33:194-199.
    • (1972) Soil Science , vol.33 , pp. 194-199
    • Carpena, O.1    Lux, A.2    Vahtras, K.3
  • 9
    • 0036893958 scopus 로고    scopus 로고
    • Automatic model selection in a hybrid perceptron/radial network
    • Cohen, S., and N. Intrator. 2001. Automatic model selection in a hybrid perceptron/radial network. Information Fusion 4:259-266.
    • (2001) Information Fusion , vol.4 , pp. 259-266
    • Cohen, S.1    Intrator, N.2
  • 10
    • 35248852064 scopus 로고    scopus 로고
    • A study of ensemble of hybrid networks with strong regularization
    • Cohen, S., and N. Intrator. 2003. A study of ensemble of hybrid networks with strong regularization. Multiple Classifier Systems 5:227-235.
    • (2003) Multiple Classifier Systems , vol.5 , pp. 227-235
    • Cohen, S.1    Intrator, N.2
  • 12
    • 0020420166 scopus 로고
    • An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils
    • Drake, E. H., and H. L. Motto. 1982. An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils. Soil Science 133:281-288.
    • (1982) Soil Science , vol.133 , pp. 281-288
    • Drake, E.H.1    Motto, H.L.2
  • 14
    • 78650275396 scopus 로고    scopus 로고
    • Comparison of infiltration measuring techniques for furrow irrigation in cracking clay soil
    • Elramlawi, H. R., H. I. Mohammed, and A. M. E. Mohammed. 2007. Comparison of infiltration measuring techniques for furrow irrigation in cracking clay soil. Journal of Science and Technology 8:7-13.
    • (2007) Journal of Science and Technology , vol.8 , pp. 7-13
    • Elramlawi, H.R.1    Mohammed, H.I.2    Mohammed, A.M.E.3
  • 16
    • 3242759024 scopus 로고    scopus 로고
    • Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes
    • Foody, G. M. 2004. Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes. International Journal of Remote Sensing 25:3091-3104.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 3091-3104
    • Foody, G.M.1
  • 17
    • 34250029688 scopus 로고    scopus 로고
    • Water infiltration and clod size distribution as influenced by ploughshare type, soil water content, and ploughing depth
    • Hemmat, A., I. Ahmadi, and A. Masoumi. 2007. Water infiltration and clod size distribution as influenced by ploughshare type, soil water content, and ploughing depth. Biosystems Engineering 97:257-266.
    • (2007) Biosystems Engineering , vol.97 , pp. 257-266
    • Hemmat, A.1    Ahmadi, I.2    Masoumi, A.3
  • 18
    • 33644655239 scopus 로고    scopus 로고
    • An evaluation of artificial neural network technique for the determination of infiltration model parameters
    • Jain, A., and A. Kumar. 2006. An evaluation of artificial neural network technique for the determination of infiltration model parameters. Applied Software Computing 6:272-282.
    • (2006) Applied Software Computing , vol.6 , pp. 272-282
    • Jain, A.1    Kumar, A.2
  • 20
    • 84899726772 scopus 로고    scopus 로고
    • Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity
    • Keshavarzi, A., and F. Sarmadian. 2010. Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity. International Journal of Environmental and Earth Sciences 1:1-7.
    • (2010) International Journal of Environmental and Earth Sciences , vol.1 , pp. 1-7
    • Keshavarzi, A.1    Sarmadian, F.2
  • 21
    • 79956321456 scopus 로고    scopus 로고
    • Modeling of soil cation exchange capacity based on fuzzy table look-up scheme and artificial neural network approach
    • Keshavarzi, A., F. Sarmadian, R. Labbafi, and M. Rajabi Vandekhali. 2011. Modeling of soil cation exchange capacity based on fuzzy table look-up scheme and artificial neural network approach. Modern Applied Science 5:1-8.
    • (2011) Modern Applied Science , vol.5 , pp. 1-8
    • Keshavarzi, A.1    Sarmadian, F.2    Labbafi, R.3    Rajabi Vandekhali, M.4
  • 23
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of 33 old and new classification algorithms
    • Loh, W., and L. Tim. 2000. A comparison of prediction accuracy, complexity, and training time of 33 old and new classification algorithms. Machine Learning 40:203-238.
    • (2000) Machine Learning , vol.40 , pp. 203-238
    • Loh, W.1    Tim, L.2
  • 25
    • 85104329532 scopus 로고    scopus 로고
    • Soil water parameters and soil quality
    • In: Doran J. W., Jones A. J., editors Madison, Wisc.,: SSSA
    • Lowery, B., M. A. Arshad, R. Lal, and W. J. Hickey. 1996. Soil water parameters and soil quality. In Methods for assessing soil quality, ed. J. W. Doran and A. J. Jones, 143-157. Madison, Wisc.: SSSA.
    • (1996) Methods for assessing soil quality , pp. 143-157
    • Lowery, B.1    Arshad, M.A.2    Lal, R.3    Hickey, W.J.4
  • 26
    • 0026358950 scopus 로고
    • Predicting cation exchange capacity from soil physical and chemical properties
    • Manrique, L. A., C. A. Jones, and P. T. Dyke. 1991. Predicting cation exchange capacity from soil physical and chemical properties. Soil Science Society of America Journal 50:787-794.
    • (1991) Soil Science Society of America Journal , vol.50 , pp. 787-794
    • Manrique, L.A.1    Jones, C.A.2    Dyke, P.T.3
  • 28
    • 0036124445 scopus 로고    scopus 로고
    • The neuro-m methods for fitting neural network parametric pedotransfer functions
    • Minasny, B., and A. B. McBratney. 2002. The neuro-m methods for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal 66:352-361.
    • (2002) Soil Science Society of America Journal , vol.66 , pp. 352-361
    • Minasny, B.1    McBratney, A.B.2
  • 30
    • 0000481203 scopus 로고
    • Total carbon, organic carbon, and organic matter
    • In: Page A. L., Miller R. H., Keeney D. R., editors 2nd, Madison, Wisc.,: American Society of Agronomy
    • Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In Methods of soil analysis, part 2, 2nd ed., ed. A. L. Page, R. H. Miller, and D. R. Keeney, 539-580. Madison, Wisc.: American Society of Agronomy.
    • (1982) Methods of soil analysis, part 2 , pp. 539-580
    • Nelson, D.W.1    Sommers, L.E.2
  • 31
    • 32544458461 scopus 로고    scopus 로고
    • Modeling the infiltration process with a multi-layer perceptron artificial neural network
    • Nestor, L. S. Y. 2006. Modeling the infiltration process with a multi-layer perceptron artificial neural network. Hydrological Sciences-Journal-des Sciences Hydrologiques 51:3-20.
    • (2006) Hydrological Sciences-Journal-des Sciences Hydrologiques , vol.51 , pp. 3-20
    • Nestor, L.S.Y.1
  • 32
    • 0030473352 scopus 로고    scopus 로고
    • Artificial neural networks to estimate soil water retention from easily measurable data
    • Pachepsky, Y. A., D. Timlin, and G. Varallyay. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal 60 (3): 727-733.
    • (1996) Soil Science Society of America Journal , vol.60 , Issue.3 , pp. 727-733
    • Pachepsky, Y.A.1    Timlin, D.2    Varallyay, G.3
  • 34
    • 0021033909 scopus 로고
    • An analysis of the contribution of organic matter and clay to cation exchange capacity of some Philippine soils
    • Sahrawat, K. L. 1983. An analysis of the contribution of organic matter and clay to cation exchange capacity of some Philippine soils. Communication in Soil Science and Plant Analysis 14:803-809.
    • (1983) Communication in Soil Science and Plant Analysis , vol.14 , pp. 803-809
    • Sahrawat, K.L.1
  • 36
  • 37
    • 12844259194 scopus 로고    scopus 로고
    • An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength
    • Singh, T. N., R. Kanchan, A. K. Verma, and S. Singh. 2003. An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength. Mining Engineering Journal 5:12-16.
    • (2003) Mining Engineering Journal , vol.5 , pp. 12-16
    • Singh, T.N.1    Kanchan, R.2    Verma, A.K.3    Singh, S.4
  • 39
    • 77954537216 scopus 로고    scopus 로고
    • 11th, Washington, D.C.,: USDA, USDA
    • USDA. 2010. Keys to soil taxonomy, 11th ed. Washington, D.C.: USDA.
    • (2010) Keys to soil taxonomy
  • 40
    • 33751569366 scopus 로고    scopus 로고
    • Application of a radial basis function neural network for diagnosis of diabetes mellitus
    • Venkatesan, P., and S. Anitha. 2006. Application of a radial basis function neural network for diagnosis of diabetes mellitus. Current Science 91:1195-1199.
    • (2006) Current Science , vol.91 , pp. 1195-1199
    • Venkatesan, P.1    Anitha, S.2
  • 41
    • 79151474442 scopus 로고    scopus 로고
    • Multiple regression, ANN (RBF, MLP), and ANFIS models for prediction of swell potential of clayey soils
    • Yilmaz, I., and O. Kaynar. 2011. Multiple regression, ANN (RBF, MLP), and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications 38:5958-5966.
    • (2011) Expert Systems with Applications , vol.38 , pp. 5958-5966
    • Yilmaz, I.1    Kaynar, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.