메뉴 건너뛰기




Volumn 50, Issue 2, 2011, Pages 166-179

Mining health care administrative data with temporal association rules on hybrid events

Author keywords

Administrative healthcare data; Hybrid events; Temporal association rules; Temporal data mining

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGY; DATA MINING; HEALTH CARE DELIVERY; HUMAN; INSULIN DEPENDENT DIABETES MELLITUS; METHODOLOGY; NON INSULIN DEPENDENT DIABETES MELLITUS;

EID: 80051722310     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.3414/ME10-01-0036     Document Type: Article
Times cited : (28)

References (44)
  • 1
    • 0034913115 scopus 로고    scopus 로고
    • The socio-organizational age of artificial intelligence in medicine
    • Stefanelli M. The socio-organizational age of artificial intelligence in medicine. Artificial Intelligence in Medicine 2001; 23 (1): 25-47.
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 25-47
    • Stefanelli, M.1
  • 4
    • 85054428751 scopus 로고    scopus 로고
    • CRC Press (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
    • Mitsa T. Temporal Data Mining. CRC Press (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series); 2010. p 395.
    • (2010) Temporal Data Mining , pp. 395
    • Mitsa, T.1
  • 5
    • 0001882616 scopus 로고
    • Fast Algorithms for Mining Association Rules in Large Databases
    • Santiago de Chile, In, Morgan Kaufmann
    • Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Databases. In: 20th International Conference on Very Large Data Bases. Santiago de Chile. Morgan Kaufmann; 1994. pp 487-499.
    • (1994) 20th International Conference on Very Large Data Bases , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 11
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An Efficient Algorithm for Mining Frequent Sequences
    • Zaki MJ. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning 2001; 42 (1-2): 31-60.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.J.1
  • 15
    • 57149147858 scopus 로고    scopus 로고
    • Mining relationships among interval-based events for classification
    • In, Series Mining relationships among interval-based events for classification, Vancouver, Canada: ACM
    • Patel D, Hsu W, Lee ML. Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD international conference on Management of data. Series Mining relationships among interval-based events for classification. Vancouver, Canada: ACM; 2008.
    • (2008) Proceedings of the 2008 ACM SIGMOD international conference on Management of data
    • Patel, D.1    Hsu, W.2    Lee, M.L.3
  • 19
    • 79953787924 scopus 로고    scopus 로고
    • Medical temporal-knowledge discovery via temporal abstraction
    • Moskovitch R, Shahar Y. Medical temporal-knowledge discovery via temporal abstraction. AMIA Annu Symp Proc; 2009. pp 452-456.
    • (2009) AMIA Annu Symp Proc , pp. 452-456
    • Moskovitch, R.1    Shahar, Y.2
  • 24
    • 0031069719 scopus 로고    scopus 로고
    • A framework for knowledge-based temporal abstraction
    • Shahar Y. A framework for knowledge-based temporal abstraction. Arificial Intelligence 1997; 90 (1-2): 79-133.
    • (1997) Arificial Intelligence , vol.90 , Issue.1-2 , pp. 79-133
    • Shahar, Y.1
  • 27
    • 0029589918 scopus 로고
    • Managing different time granularities of clinical information by an interval-based temporal data model
    • Combi C, Pinciroli F, Pozzi G. Managing different time granularities of clinical information by an interval-based temporal data model. Methods Inf Med 1995; 34 (5): 458-474.
    • (1995) Methods Inf Med , vol.34 , Issue.5 , pp. 458-474
    • Combi, C.1    Pinciroli, F.2    Pozzi, G.3
  • 28
    • 0029706596 scopus 로고    scopus 로고
    • Testing complex temporal relationships involving multiple granularities and its application to data mining (extended abstract)
    • In, Montreal: ACM
    • Bettini C, Wang XS, Jajodia S. Testing complex temporal relationships involving multiple granularities and its application to data mining (extended abstract). In: 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Montreal: ACM; 1996. pp 68-78.
    • (1996) 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems , pp. 68-78
    • Bettini, C.1    Wang, X.S.2    Jajodia, S.3
  • 29
    • 0021466185 scopus 로고
    • Towards a general theory of action and time
    • Allen JF. Towards a general theory of action and time. Artificial Intelligence 1984; 23 (2): 123-154.
    • (1984) Artificial Intelligence , vol.23 , Issue.2 , pp. 123-154
    • Allen, J.F.1
  • 31
    • 0002401815 scopus 로고
    • Discovery of Multiple-Level Association Rules from Large Databases
    • In, Zurich: Morgan Kaufmann
    • Han J, Fu Y. Discovery of Multiple-Level Association Rules from Large Databases. In: 21th International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann; 1995. pp 420-431.
    • (1995) 21th International Conference on Very Large Data Bases , pp. 420-431
    • Han, J.1    Fu, Y.2
  • 32
    • 56149106503 scopus 로고    scopus 로고
    • An ontology-driven method for hierarchical mining of temporal patterns: Application to HIV drug resistance research
    • In, Chicago: AMIA
    • Raj R, O'Connor MJ, Das AK. An ontology-driven method for hierarchical mining of temporal patterns: application to HIV drug resistance research. In: AMIA Annual Symposium. Chicago: AMIA; 2007. pp 614-619.
    • (2007) AMIA Annual Symposium , pp. 614-619
    • Raj, R.1    O'Connor, M.J.2    Das, A.K.3
  • 36
    • 35648950495 scopus 로고    scopus 로고
    • Evaluation of rule interestingness measures in medical knowledge discovery in databases
    • Ohsaki M, Abe H, Tsumoto S, Yokoi H, Yamaguchi T. Evaluation of rule interestingness measures in medical knowledge discovery in databases. Artificial Intelligence in Medicine 2007; 41 (3): 177-196.
    • (2007) Artificial Intelligence in Medicine , vol.41 , Issue.3 , pp. 177-196
    • Ohsaki, M.1    Abe, H.2    Tsumoto, S.3    Yokoi, H.4    Yamaguchi, T.5
  • 39
    • 33645456259 scopus 로고    scopus 로고
    • Locating previously unknown patterns in data-mining results: A dual dataand knowledge-mining method
    • Siadaty MS, Knaus WA. Locating previously unknown patterns in data-mining results: a dual dataand knowledge-mining method. BMC Medical Informatics and Decision Making 2006; 6: 13.
    • (2006) BMC Medical Informatics and Decision Making , vol.6 , pp. 13
    • Siadaty, M.S.1    Knaus, W.A.2
  • 41
    • 38449112989 scopus 로고    scopus 로고
    • A data mining approach to analyze non-compliance with a guideline for the treatment of breast cancer
    • Razavi AR, Gill H, Ahlfeldt H, Shahsavar N. A data mining approach to analyze non-compliance with a guideline for the treatment of breast cancer. Studies in Health Technology and Informatics 2007; 129 (Pt 1): 591-595.
    • (2007) Studies in Health Technology and Informatics , vol.129 , Issue.PART 1 , pp. 591-595
    • Razavi, A.R.1    Gill, H.2    Ahlfeldt, H.3    Shahsavar, N.4
  • 42
    • 72249095489 scopus 로고    scopus 로고
    • Mining administrative and clinical diabetes data with temporal association rules
    • Concaro S, Sacchi L, Cerra C, Bellazzi R. Mining administrative and clinical diabetes data with temporal association rules. Stud Health Technol Inform 2009; 150: 574-578.
    • (2009) Stud Health Technol Inform , vol.150 , pp. 574-578
    • Concaro, S.1    Sacchi, L.2    Cerra, C.3    Bellazzi, R.4
  • 43
  • 44
    • 79953771749 scopus 로고    scopus 로고
    • Temporal Data Mining for the Assessment of the Costs Related to Diabetes Mellitus Pharmacological Treatment
    • In, San Francisco: AMIA
    • Concaro S, Sacchi L, Cerra C, Stefanelli M, Fratino P, Bellazzi R. Temporal Data Mining for the Assessment of the Costs Related to Diabetes Mellitus Pharmacological Treatment. In: AMIA Annual Symposium. San Francisco: AMIA; 2009. pp 119-123.
    • (2009) AMIA Annual Symposium , pp. 119-123
    • Concaro, S.1    Sacchi, L.2    Cerra, C.3    Stefanelli, M.4    Fratino, P.5    Bellazzi, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.