메뉴 건너뛰기




Volumn 48, Issue , 2014, Pages 94-105

Learning Bayesian networks for clinical time series analysis

Author keywords

Bayesian networks; Chronic disease management; Chronic obstructive pulmonary disease; Clinical time series; Machine learning; Temporal modelling

Indexed keywords

BAYESIAN NETWORKS; CLASSIFIERS; LEARNING SYSTEMS; TIME SERIES ANALYSIS; ARTIFICIAL INTELLIGENCE; DISEASES; PULMONARY DISEASES;

EID: 84899478588     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2013.12.007     Document Type: Article
Times cited : (60)

References (44)
  • 1
    • 0000854197 scopus 로고    scopus 로고
    • The Bayesian structural EM algorithm
    • In: UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence
    • Friedman N, The Bayesian structural EM algorithm. In: UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence; 1998.
    • (1998)
    • Friedman, N.1
  • 2
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B. Bootstrap methods: another look at the jackknife. Ann Statist 1979, 7(1):1-26.
    • (1979) Ann Statist , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 4
    • 34548290964 scopus 로고    scopus 로고
    • COPD exacerbations: defining their cause and prevention
    • Wedzicha J., Seemungal T. COPD exacerbations: defining their cause and prevention. Lancet 2007, 370(9589):786-796.
    • (2007) Lancet , vol.370 , Issue.9589 , pp. 786-796
    • Wedzicha, J.1    Seemungal, T.2
  • 5
    • 3442890263 scopus 로고    scopus 로고
    • Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease
    • Wilkinson T., Donaldson G., Hurst J., Seemungal T., Wedzicha J. Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004, 169(12):1298-1303.
    • (2004) Am J Respir Crit Care Med , vol.169 , Issue.12 , pp. 1298-1303
    • Wilkinson, T.1    Donaldson, G.2    Hurst, J.3    Seemungal, T.4    Wedzicha, J.5
  • 7
    • 46649093156 scopus 로고    scopus 로고
    • Dynamic Bayesian networks as prognostic models for clinical patient management
    • van Gerven M., Taal B., Lucas P. Dynamic Bayesian networks as prognostic models for clinical patient management. J. Biomed. Inf 2008, 41(4):515-529.
    • (2008) J. Biomed. Inf , vol.41 , Issue.4 , pp. 515-529
    • van Gerven, M.1    Taal, B.2    Lucas, P.3
  • 8
    • 77949269473 scopus 로고    scopus 로고
    • Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit
    • Peelen L., de Keizer N., de Jonge E., Bosman R., Abu-Hanna A., Peek N. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit. J Biomed Inf 2010, 43(2):273-286.
    • (2010) J Biomed Inf , vol.43 , Issue.2 , pp. 273-286
    • Peelen, L.1    de Keizer, N.2    de Jonge, E.3    Bosman, R.4    Abu-Hanna, A.5    Peek, N.6
  • 9
    • 65349143362 scopus 로고    scopus 로고
    • Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records
    • Himes B., Dai Y., Kohane I., Weiss S., Ramoni M. Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. J Am Med Infor Assoc 2009, 16(3):371-379.
    • (2009) J Am Med Infor Assoc , vol.16 , Issue.3 , pp. 371-379
    • Himes, B.1    Dai, Y.2    Kohane, I.3    Weiss, S.4    Ramoni, M.5
  • 11
    • 77950971131 scopus 로고    scopus 로고
    • Home telehealth for chronic obstrcutive pulmonary disease: a systematic review and meta-analysis
    • Polisena J., Tran K., Cimon K., Hutton B., McGill S., Palmer K., et al. Home telehealth for chronic obstrcutive pulmonary disease: a systematic review and meta-analysis. J Telemed Telecare 2010, 16(3):120-127.
    • (2010) J Telemed Telecare , vol.16 , Issue.3 , pp. 120-127
    • Polisena, J.1    Tran, K.2    Cimon, K.3    Hutton, B.4    McGill, S.5    Palmer, K.6
  • 12
    • 77956386534 scopus 로고    scopus 로고
    • Design of a decision-support architecture for management of remotely monitored patients
    • Basilakis J., Lovell N., Redmond S., Celler B. Design of a decision-support architecture for management of remotely monitored patients. IEEE Trans Inf Technol Biomed 2010, 14(5):1216-1226.
    • (2010) IEEE Trans Inf Technol Biomed , vol.14 , Issue.5 , pp. 1216-1226
    • Basilakis, J.1    Lovell, N.2    Redmond, S.3    Celler, B.4
  • 13
    • 0001781779 scopus 로고
    • Dynamic network models for forecasting
    • In: UAI '92: proceedings of the 8th conference on uncertainty in artificial intelligence
    • Dagum P, Galper A, Horvitz E. Dynamic network models for forecasting. In: UAI '92: proceedings of the 8th conference on uncertainty in artificial intelligence; 1992. p. 41-8.
    • (1992) , pp. 41-48
    • Dagum, P.1    Galper, A.2    Horvitz, E.3
  • 14
    • 0002823247 scopus 로고
    • Forecasting sleep apnea with dynamic models
    • In: UAI '93: proceedings of the 9th conference on uncertainty in artificial intelligence
    • Dagum P, Galper A. Forecasting sleep apnea with dynamic models. In: UAI '93: proceedings of the 9th conference on uncertainty in artificial intelligence; 1993. p. 64-71.
    • (1993) , pp. 64-71
    • Dagum, P.1    Galper, A.2
  • 15
    • 0002219642 scopus 로고    scopus 로고
    • Data analysis with Bayesian networks: a bootstrap approach
    • UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence
    • Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian networks: a bootstrap approach. In: UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence; 1999.
    • (1999)
    • Friedman, N.1    Goldszmidt, M.2    Wyner, A.3
  • 16
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim S., Imoto S., Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings Bioinformatics 2003, 4(3):228-235.
    • (2003) Briefings Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn 1996, 24(2):123-140.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 18
  • 19
    • 33846501839 scopus 로고    scopus 로고
    • Learning dynamic Bayesian networks from multivariate time series with changing dependencies
    • In: IDA '03: proceedings of the 5th international symposium on intelligent data analysis, LNCS
    • Tucker A, Liu X. Learning dynamic Bayesian networks from multivariate time series with changing dependencies. In: IDA '03: proceedings of the 5th international symposium on intelligent data analysis, LNCS, vol. 2810. 2003. p. 100-10.
    • (2003) , vol.2810 , pp. 100-110
    • Tucker, A.1    Liu, X.2
  • 20
    • 43049129993 scopus 로고    scopus 로고
    • Learning the structure of dynamic Bayesian networks from time series and steady state measurements
    • Lähdesmäki H., Shmulevich I. Learning the structure of dynamic Bayesian networks from time series and steady state measurements. Mach Learn 2008, 71(2-3):185-217.
    • (2008) Mach Learn , vol.71 , Issue.2-3 , pp. 185-217
    • Lähdesmäki, H.1    Shmulevich, I.2
  • 21
    • 84899490227 scopus 로고    scopus 로고
    • A temporal Bayesian network for diagnosis and prediction
    • UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence
    • Arroyo-Figueroa G, Sucar L. A temporal Bayesian network for diagnosis and prediction. In: UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence; 1999.
    • (1999)
    • Arroyo-Figueroa, G.1    Sucar, L.2
  • 23
    • 84899470850 scopus 로고    scopus 로고
    • GOLD. Global initiative for obstructive lung disease.
    • GOLD. Global initiative for obstructive lung disease. http://www.goldcopd.com.
  • 24
    • 84860465538 scopus 로고    scopus 로고
    • Validity of an automated telephonic system to assess COPD exacerbation rates
    • Bischoff E., Boer L., Molema J., Akkermans R., van Weel C., Vercoulen J., et al. Validity of an automated telephonic system to assess COPD exacerbation rates. Eur Respir J 2012, 39(5):1090-1096.
    • (2012) Eur Respir J , vol.39 , Issue.5 , pp. 1090-1096
    • Bischoff, E.1    Boer, L.2    Molema, J.3    Akkermans, R.4    van Weel, C.5    Vercoulen, J.6
  • 25
    • 0022707396 scopus 로고
    • A diagnostic method that uses causal knowledge and linear programming in the application of Bayes' formula
    • Cooper G. A diagnostic method that uses causal knowledge and linear programming in the application of Bayes' formula. Comput. Methods Programs Biomed 1986, 22(2):223-237.
    • (1986) Comput. Methods Programs Biomed , vol.22 , Issue.2 , pp. 223-237
    • Cooper, G.1
  • 27
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • Dean T., Kanazawa K. A model for reasoning about persistence and causation. Comput Intell 1989, 5(3):142-150.
    • (1989) Comput Intell , vol.5 , Issue.3 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 28
    • 0013288412 scopus 로고    scopus 로고
    • Dynamic Bayesian networks: representation, inference and learning
    • Ph.D. thesis. University of California, Berkeley
    • Murphy KP. Dynamic Bayesian networks: representation, inference and learning, Ph.D. thesis. University of California, Berkeley; 2002.
    • (2002)
    • Murphy, K.P.1
  • 29
    • 79551497706 scopus 로고    scopus 로고
    • Learning non-stationary dynamic Bayesian networks
    • Robinson J., Hartemink A. Learning non-stationary dynamic Bayesian networks. J Mach Learn Res 2010, 11:3647-3680.
    • (2010) J Mach Learn Res , vol.11 , pp. 3647-3680
    • Robinson, J.1    Hartemink, A.2
  • 33
    • 1842815776 scopus 로고    scopus 로고
    • A comparison of learning algorithms for Bayesian networks: a case study based on data from an emergency medical service
    • Acid S., de Campos L., Fernández-Luna J., Rodríguez S., Rodríguez J., Salcedo J. A comparison of learning algorithms for Bayesian networks: a case study based on data from an emergency medical service. Artif Intell Med 2004, 30(3):215-232.
    • (2004) Artif Intell Med , vol.30 , Issue.3 , pp. 215-232
    • Acid, S.1    de Campos, L.2    Fernández-Luna, J.3    Rodríguez, S.4    Rodríguez, J.5    Salcedo, J.6
  • 34
    • 84899485752 scopus 로고    scopus 로고
    • A hybrid anytime algorithm for the construction of causal models from sparse data
    • UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence
    • Dash D, Druzdzel M. A hybrid anytime algorithm for the construction of causal models from sparse data. In: UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence; 1999.
    • (1999)
    • Dash, D.1    Druzdzel, M.2
  • 35
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D., Geiger D., Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 1995, 20:197-243.
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 36
    • 0033243868 scopus 로고    scopus 로고
    • Theoretical comparisons of block bootstrap methods
    • Lahiri S. Theoretical comparisons of block bootstrap methods. Ann Stat 1999, 27(1):386-404.
    • (1999) Ann Stat , vol.27 , Issue.1 , pp. 386-404
    • Lahiri, S.1
  • 37
    • 84899486066 scopus 로고    scopus 로고
    • boot: bootstrap R (S-Plus) functions
    • Canty A, Ripley B. boot: bootstrap R (S-Plus) functions; 2012. http://cran.r-project.org/web/packages/boot/.
    • (2012)
    • Canty, A.1    Ripley, B.2
  • 38
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence
    • Friedman N, Murphy K, Russell S. Learning the structure of dynamic probabilistic networks. In: UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence; 1998.
    • (1998)
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 39
    • 0005907840 scopus 로고    scopus 로고
    • An information-theoretic analysis of hard and soft assignment methods for clustering
    • In: UAI '97: proceedings of the 13th annual conference on uncertainty in artificial intelligence
    • Kearns M, Mansour Y, Ng A, An information-theoretic analysis of hard and soft assignment methods for clustering. In: UAI '97: proceedings of the 13th annual conference on uncertainty in artificial intelligence; 1997.
    • (1997)
    • Kearns, M.1    Mansour, Y.2    Ng, A.3
  • 40
    • 84899483522 scopus 로고    scopus 로고
    • Decision Systems Laboratory. University of Pittsburgh, SMILE: Structural Modeling, Inference, and Learning Engine
    • Decision Systems Laboratory. University of Pittsburgh, SMILE: Structural Modeling, Inference, and Learning Engine http://genie.sis.pitt.edu/.
  • 41
    • 84899472052 scopus 로고    scopus 로고
    • Banjo: Bayesian Network Inference with Java bjects, Duke University
    • Hartemink A. Banjo: Bayesian Network Inference with Java Objects, Duke University; 2010. http://www.cs.duke.edu/~amink/software/banjo/.
    • (2010)
    • Hartemink, A.1
  • 42
    • 77957998357 scopus 로고    scopus 로고
    • Domiciliary pulse-oximetry at exacerbation of chronic obstructive pulmonary disease: prospective pilot study
    • Hurst J., Donaldson G., Quint J., Goldring J., Patel A., Wedzicha J. Domiciliary pulse-oximetry at exacerbation of chronic obstructive pulmonary disease: prospective pilot study. BMC Pulm Med 2010, 10(1):52.
    • (2010) BMC Pulm Med , vol.10 , Issue.1 , pp. 52
    • Hurst, J.1    Donaldson, G.2    Quint, J.3    Goldring, J.4    Patel, A.5    Wedzicha, J.6
  • 43
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier G. Verification of forecasts expressed in terms of probability. Mon Weather Rev 1950, 78(1):1-3.
    • (1950) Mon Weather Rev , vol.78 , Issue.1 , pp. 1-3
    • Brier, G.1
  • 44
    • 1842792703 scopus 로고    scopus 로고
    • Learning the dimensionality of hidden variables
    • UAI '01: proceedings of the 17th conference on uncertainty in artificial intelligence
    • Elidan G, Friedman N. Learning the dimensionality of hidden variables. In: UAI '01: proceedings of the 17th conference on uncertainty in artificial intelligence; 2001.
    • (2001)
    • Elidan, G.1    Friedman, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.