-
1
-
-
0000854197
-
The Bayesian structural EM algorithm
-
In: UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence
-
Friedman N, The Bayesian structural EM algorithm. In: UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence; 1998.
-
(1998)
-
-
Friedman, N.1
-
2
-
-
0002344794
-
Bootstrap methods: another look at the jackknife
-
Efron B. Bootstrap methods: another look at the jackknife. Ann Statist 1979, 7(1):1-26.
-
(1979)
Ann Statist
, vol.7
, Issue.1
, pp. 1-26
-
-
Efron, B.1
-
3
-
-
38849185354
-
Epidemiology and natural history of COPD
-
Viegi G., Pistelli F., Sherrill D., Maio S., Baldacci S., Carrozzi L., et al. epidemiology and natural history of COPD. Eur Respir J 2007, 30(5):993-1013.
-
(2007)
Eur Respir J
, vol.30
, Issue.5
, pp. 993-1013
-
-
Viegi, G.1
Pistelli, F.2
Sherrill, D.3
Maio, S.4
Baldacci, S.5
Carrozzi, L.6
-
4
-
-
34548290964
-
COPD exacerbations: defining their cause and prevention
-
Wedzicha J., Seemungal T. COPD exacerbations: defining their cause and prevention. Lancet 2007, 370(9589):786-796.
-
(2007)
Lancet
, vol.370
, Issue.9589
, pp. 786-796
-
-
Wedzicha, J.1
Seemungal, T.2
-
5
-
-
3442890263
-
Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease
-
Wilkinson T., Donaldson G., Hurst J., Seemungal T., Wedzicha J. Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004, 169(12):1298-1303.
-
(2004)
Am J Respir Crit Care Med
, vol.169
, Issue.12
, pp. 1298-1303
-
-
Wilkinson, T.1
Donaldson, G.2
Hurst, J.3
Seemungal, T.4
Wedzicha, J.5
-
7
-
-
46649093156
-
Dynamic Bayesian networks as prognostic models for clinical patient management
-
van Gerven M., Taal B., Lucas P. Dynamic Bayesian networks as prognostic models for clinical patient management. J. Biomed. Inf 2008, 41(4):515-529.
-
(2008)
J. Biomed. Inf
, vol.41
, Issue.4
, pp. 515-529
-
-
van Gerven, M.1
Taal, B.2
Lucas, P.3
-
8
-
-
77949269473
-
Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit
-
Peelen L., de Keizer N., de Jonge E., Bosman R., Abu-Hanna A., Peek N. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit. J Biomed Inf 2010, 43(2):273-286.
-
(2010)
J Biomed Inf
, vol.43
, Issue.2
, pp. 273-286
-
-
Peelen, L.1
de Keizer, N.2
de Jonge, E.3
Bosman, R.4
Abu-Hanna, A.5
Peek, N.6
-
9
-
-
65349143362
-
Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records
-
Himes B., Dai Y., Kohane I., Weiss S., Ramoni M. Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. J Am Med Infor Assoc 2009, 16(3):371-379.
-
(2009)
J Am Med Infor Assoc
, vol.16
, Issue.3
, pp. 371-379
-
-
Himes, B.1
Dai, Y.2
Kohane, I.3
Weiss, S.4
Ramoni, M.5
-
10
-
-
79960987554
-
Telehealthcare for chronic obstructive pulmonary disease
-
McLean S., Nurmatov U., Liu J., Pagliari C., Car J., Sheikh A. Telehealthcare for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011, 7.
-
(2011)
Cochrane Database Syst Rev
, vol.7
-
-
McLean, S.1
Nurmatov, U.2
Liu, J.3
Pagliari, C.4
Car, J.5
Sheikh, A.6
-
11
-
-
77950971131
-
Home telehealth for chronic obstrcutive pulmonary disease: a systematic review and meta-analysis
-
Polisena J., Tran K., Cimon K., Hutton B., McGill S., Palmer K., et al. Home telehealth for chronic obstrcutive pulmonary disease: a systematic review and meta-analysis. J Telemed Telecare 2010, 16(3):120-127.
-
(2010)
J Telemed Telecare
, vol.16
, Issue.3
, pp. 120-127
-
-
Polisena, J.1
Tran, K.2
Cimon, K.3
Hutton, B.4
McGill, S.5
Palmer, K.6
-
12
-
-
77956386534
-
Design of a decision-support architecture for management of remotely monitored patients
-
Basilakis J., Lovell N., Redmond S., Celler B. Design of a decision-support architecture for management of remotely monitored patients. IEEE Trans Inf Technol Biomed 2010, 14(5):1216-1226.
-
(2010)
IEEE Trans Inf Technol Biomed
, vol.14
, Issue.5
, pp. 1216-1226
-
-
Basilakis, J.1
Lovell, N.2
Redmond, S.3
Celler, B.4
-
13
-
-
0001781779
-
Dynamic network models for forecasting
-
In: UAI '92: proceedings of the 8th conference on uncertainty in artificial intelligence
-
Dagum P, Galper A, Horvitz E. Dynamic network models for forecasting. In: UAI '92: proceedings of the 8th conference on uncertainty in artificial intelligence; 1992. p. 41-8.
-
(1992)
, pp. 41-48
-
-
Dagum, P.1
Galper, A.2
Horvitz, E.3
-
14
-
-
0002823247
-
Forecasting sleep apnea with dynamic models
-
In: UAI '93: proceedings of the 9th conference on uncertainty in artificial intelligence
-
Dagum P, Galper A. Forecasting sleep apnea with dynamic models. In: UAI '93: proceedings of the 9th conference on uncertainty in artificial intelligence; 1993. p. 64-71.
-
(1993)
, pp. 64-71
-
-
Dagum, P.1
Galper, A.2
-
15
-
-
0002219642
-
Data analysis with Bayesian networks: a bootstrap approach
-
UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence
-
Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian networks: a bootstrap approach. In: UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence; 1999.
-
(1999)
-
-
Friedman, N.1
Goldszmidt, M.2
Wyner, A.3
-
16
-
-
0842309206
-
Inferring gene networks from time series microarray data using dynamic Bayesian networks
-
Kim S., Imoto S., Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings Bioinformatics 2003, 4(3):228-235.
-
(2003)
Briefings Bioinformatics
, vol.4
, Issue.3
, pp. 228-235
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
17
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach Learn 1996, 24(2):123-140.
-
(1996)
Mach Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
19
-
-
33846501839
-
Learning dynamic Bayesian networks from multivariate time series with changing dependencies
-
In: IDA '03: proceedings of the 5th international symposium on intelligent data analysis, LNCS
-
Tucker A, Liu X. Learning dynamic Bayesian networks from multivariate time series with changing dependencies. In: IDA '03: proceedings of the 5th international symposium on intelligent data analysis, LNCS, vol. 2810. 2003. p. 100-10.
-
(2003)
, vol.2810
, pp. 100-110
-
-
Tucker, A.1
Liu, X.2
-
20
-
-
43049129993
-
Learning the structure of dynamic Bayesian networks from time series and steady state measurements
-
Lähdesmäki H., Shmulevich I. Learning the structure of dynamic Bayesian networks from time series and steady state measurements. Mach Learn 2008, 71(2-3):185-217.
-
(2008)
Mach Learn
, vol.71
, Issue.2-3
, pp. 185-217
-
-
Lähdesmäki, H.1
Shmulevich, I.2
-
21
-
-
84899490227
-
A temporal Bayesian network for diagnosis and prediction
-
UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence
-
Arroyo-Figueroa G, Sucar L. A temporal Bayesian network for diagnosis and prediction. In: UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence; 1999.
-
(1999)
-
-
Arroyo-Figueroa, G.1
Sucar, L.2
-
22
-
-
84878196491
-
An autonomous mobile system for the management of COPD
-
van der Heijden M., Lucas P., Lijnse B., Heijdra Y., Schermer T. An autonomous mobile system for the management of COPD. J Biomed Inf 2013, 46(3):458-469.
-
(2013)
J Biomed Inf
, vol.46
, Issue.3
, pp. 458-469
-
-
van der Heijden, M.1
Lucas, P.2
Lijnse, B.3
Heijdra, Y.4
Schermer, T.5
-
23
-
-
84899470850
-
-
GOLD. Global initiative for obstructive lung disease.
-
GOLD. Global initiative for obstructive lung disease. http://www.goldcopd.com.
-
-
-
-
24
-
-
84860465538
-
Validity of an automated telephonic system to assess COPD exacerbation rates
-
Bischoff E., Boer L., Molema J., Akkermans R., van Weel C., Vercoulen J., et al. Validity of an automated telephonic system to assess COPD exacerbation rates. Eur Respir J 2012, 39(5):1090-1096.
-
(2012)
Eur Respir J
, vol.39
, Issue.5
, pp. 1090-1096
-
-
Bischoff, E.1
Boer, L.2
Molema, J.3
Akkermans, R.4
van Weel, C.5
Vercoulen, J.6
-
25
-
-
0022707396
-
A diagnostic method that uses causal knowledge and linear programming in the application of Bayes' formula
-
Cooper G. A diagnostic method that uses causal knowledge and linear programming in the application of Bayes' formula. Comput. Methods Programs Biomed 1986, 22(2):223-237.
-
(1986)
Comput. Methods Programs Biomed
, vol.22
, Issue.2
, pp. 223-237
-
-
Cooper, G.1
-
27
-
-
84990553353
-
A model for reasoning about persistence and causation
-
Dean T., Kanazawa K. A model for reasoning about persistence and causation. Comput Intell 1989, 5(3):142-150.
-
(1989)
Comput Intell
, vol.5
, Issue.3
, pp. 142-150
-
-
Dean, T.1
Kanazawa, K.2
-
28
-
-
0013288412
-
Dynamic Bayesian networks: representation, inference and learning
-
Ph.D. thesis. University of California, Berkeley
-
Murphy KP. Dynamic Bayesian networks: representation, inference and learning, Ph.D. thesis. University of California, Berkeley; 2002.
-
(2002)
-
-
Murphy, K.P.1
-
29
-
-
79551497706
-
Learning non-stationary dynamic Bayesian networks
-
Robinson J., Hartemink A. Learning non-stationary dynamic Bayesian networks. J Mach Learn Res 2010, 11:3647-3680.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 3647-3680
-
-
Robinson, J.1
Hartemink, A.2
-
33
-
-
1842815776
-
A comparison of learning algorithms for Bayesian networks: a case study based on data from an emergency medical service
-
Acid S., de Campos L., Fernández-Luna J., Rodríguez S., Rodríguez J., Salcedo J. A comparison of learning algorithms for Bayesian networks: a case study based on data from an emergency medical service. Artif Intell Med 2004, 30(3):215-232.
-
(2004)
Artif Intell Med
, vol.30
, Issue.3
, pp. 215-232
-
-
Acid, S.1
de Campos, L.2
Fernández-Luna, J.3
Rodríguez, S.4
Rodríguez, J.5
Salcedo, J.6
-
34
-
-
84899485752
-
A hybrid anytime algorithm for the construction of causal models from sparse data
-
UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence
-
Dash D, Druzdzel M. A hybrid anytime algorithm for the construction of causal models from sparse data. In: UAI '99: proceedings of the 15th conference on uncertainty in artificial intelligence; 1999.
-
(1999)
-
-
Dash, D.1
Druzdzel, M.2
-
35
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Heckerman D., Geiger D., Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 1995, 20:197-243.
-
(1995)
Mach Learn
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
36
-
-
0033243868
-
Theoretical comparisons of block bootstrap methods
-
Lahiri S. Theoretical comparisons of block bootstrap methods. Ann Stat 1999, 27(1):386-404.
-
(1999)
Ann Stat
, vol.27
, Issue.1
, pp. 386-404
-
-
Lahiri, S.1
-
37
-
-
84899486066
-
-
boot: bootstrap R (S-Plus) functions
-
Canty A, Ripley B. boot: bootstrap R (S-Plus) functions; 2012. http://cran.r-project.org/web/packages/boot/.
-
(2012)
-
-
Canty, A.1
Ripley, B.2
-
38
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence
-
Friedman N, Murphy K, Russell S. Learning the structure of dynamic probabilistic networks. In: UAI '98: proceedings of the 14th conference on uncertainty in artificial intelligence; 1998.
-
(1998)
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
39
-
-
0005907840
-
An information-theoretic analysis of hard and soft assignment methods for clustering
-
In: UAI '97: proceedings of the 13th annual conference on uncertainty in artificial intelligence
-
Kearns M, Mansour Y, Ng A, An information-theoretic analysis of hard and soft assignment methods for clustering. In: UAI '97: proceedings of the 13th annual conference on uncertainty in artificial intelligence; 1997.
-
(1997)
-
-
Kearns, M.1
Mansour, Y.2
Ng, A.3
-
40
-
-
84899483522
-
-
Decision Systems Laboratory. University of Pittsburgh, SMILE: Structural Modeling, Inference, and Learning Engine
-
Decision Systems Laboratory. University of Pittsburgh, SMILE: Structural Modeling, Inference, and Learning Engine http://genie.sis.pitt.edu/.
-
-
-
-
41
-
-
84899472052
-
-
Banjo: Bayesian Network Inference with Java bjects, Duke University
-
Hartemink A. Banjo: Bayesian Network Inference with Java Objects, Duke University; 2010. http://www.cs.duke.edu/~amink/software/banjo/.
-
(2010)
-
-
Hartemink, A.1
-
42
-
-
77957998357
-
Domiciliary pulse-oximetry at exacerbation of chronic obstructive pulmonary disease: prospective pilot study
-
Hurst J., Donaldson G., Quint J., Goldring J., Patel A., Wedzicha J. Domiciliary pulse-oximetry at exacerbation of chronic obstructive pulmonary disease: prospective pilot study. BMC Pulm Med 2010, 10(1):52.
-
(2010)
BMC Pulm Med
, vol.10
, Issue.1
, pp. 52
-
-
Hurst, J.1
Donaldson, G.2
Quint, J.3
Goldring, J.4
Patel, A.5
Wedzicha, J.6
-
43
-
-
0003010182
-
Verification of forecasts expressed in terms of probability
-
Brier G. Verification of forecasts expressed in terms of probability. Mon Weather Rev 1950, 78(1):1-3.
-
(1950)
Mon Weather Rev
, vol.78
, Issue.1
, pp. 1-3
-
-
Brier, G.1
-
44
-
-
1842792703
-
Learning the dimensionality of hidden variables
-
UAI '01: proceedings of the 17th conference on uncertainty in artificial intelligence
-
Elidan G, Friedman N. Learning the dimensionality of hidden variables. In: UAI '01: proceedings of the 17th conference on uncertainty in artificial intelligence; 2001.
-
(2001)
-
-
Elidan, G.1
Friedman, N.2
|