메뉴 건너뛰기




Volumn 446, Issue 4, 2014, Pages 850-856

Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification

Author keywords

Dimension reduction; Filter method; Imbalance classes; Microarray classification; Support vector machine; Wrapper method

Indexed keywords

DIMENSION REDUCTION; FILTER METHOD; IMBALANCE CLASSES; MICROARRAY CLASSIFICATION; SUPPORT VECTOR MACHINE; WRAPPER METHOD;

EID: 84899474837     PISSN: 0006291X     EISSN: 10902104     Source Type: Journal    
DOI: 10.1016/j.bbrc.2014.02.146     Document Type: Article
Times cited : (26)

References (41)
  • 2
    • 84861510685 scopus 로고    scopus 로고
    • A survey on filter techniques for feature selection in gene expression microarray analysis
    • J.T. Cosmin lazar A survey on filter techniques for feature selection in gene expression microarray analysis IEEE/ACM Trans. Comput. Biol. Bioinf. 14 2012
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.14
    • Cosmin Lazar, J.T.1
  • 3
  • 4
    • 84899481803 scopus 로고    scopus 로고
    • Robust feature selection for microarray data based on multicriterion fusio
    • F.Y. Mao Robust feature selection for microarray data based on multicriterion fusio IEEE/ACM Trans. Comput. Biol. Bioinf. 13 2012
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.13
    • Mao, F.Y.1
  • 6
    • 84899480735 scopus 로고    scopus 로고
    • DBFS: An effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets
    • S.H. Minaalibeigi DBFS: an effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets Data Knowledge Eng. 37 2013
    • (2013) Data Knowledge Eng. , vol.37
    • Minaalibeigi, S.H.1
  • 7
    • 76849099090 scopus 로고    scopus 로고
    • Data mining of gene expression data by fuzzy and hybrid fuzzy methods
    • M.I. Gerald Schaefer Data mining of gene expression data by fuzzy and hybrid fuzzy methods IEEE Trans. Inf. Technol. Biomed. 7 2010
    • (2010) IEEE Trans. Inf. Technol. Biomed. , vol.7
    • Gerald Schaefer, M.I.1
  • 8
    • 84863666181 scopus 로고    scopus 로고
    • Efficient feature selection filters for high-dimensional data
    • Artur J. Ferreira, and Mário A.T. Figueiredo Efficient feature selection filters for high-dimensional data Pattern Recognit. 11 2012
    • (2012) Pattern Recognit. , vol.11
    • Ferreira, A.J.1    Figueiredo, M.A.T.2
  • 9
    • 84899489432 scopus 로고    scopus 로고
    • Feature evaluation and selection with cooperative game theory
    • Y.L. Xin Sun Feature evaluation and selection with cooperative game theory Pattern Recognit. Lett. 11 2012
    • (2012) Pattern Recognit. Lett. , vol.11
    • Xin Sun, Y.L.1
  • 10
    • 84899486699 scopus 로고    scopus 로고
    • Using cooperative game theory to optimize the feature selection problem
    • Y.L. Xin Sun Using cooperative game theory to optimize the feature selection problem Neurocomputing 8 2011
    • (2011) Neurocomputing , vol.8
    • Xin Sun, Y.L.1
  • 11
    • 64549099411 scopus 로고    scopus 로고
    • A two-stage feature selection method for gene expression data
    • L.-Y. Chuang et al. A two-stage feature selection method for gene expression data OMICS: J. Integr. Biol. 13 2009 127 137
    • (2009) OMICS: J. Integr. Biol. , vol.13 , pp. 127-137
    • Chuang, L.-Y.1
  • 12
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher The use of multiple measurements in taxonomic problems Ann. Eugen. 7 1939 179 188
    • (1939) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.1
  • 13
    • 33745743918 scopus 로고    scopus 로고
    • Computational and theoretical analysis of null space and orthogonal linear discriminant analysis
    • T.X. JiepingYe Computational and theoretical analysis of null space and orthogonal linear discriminant analysis J. Mach. Learn. Res. 22 2006
    • (2006) J. Mach. Learn. Res. , vol.22
    • Jiepingye, T.X.1
  • 14
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • J.G. Thomas et al. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles Genome Res. 11 7 2001 1227 1236
    • (2001) Genome Res. , vol.11 , Issue.7 , pp. 1227-1236
    • Thomas, J.G.1
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286 5439 1999 531 537
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1
  • 16
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance for gene expression microarray data
    • M.K. Kerr, M. Martin, and G.A. Churchill Analysis of variance for gene expression microarray data J. Comput. Biol. 7 6 2000 819 837
    • (2000) J. Comput. Biol. , vol.7 , Issue.6 , pp. 819-837
    • Kerr, M.K.1    Martin, M.2    Churchill, G.A.3
  • 17
    • 0032693327 scopus 로고    scopus 로고
    • Functional genomics: Expression analysis of Escherichia coli growing on minimal and rich media
    • H. Tao et al. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media J. Bacteriol. 181 1999 6425 6440
    • (1999) J. Bacteriol. , vol.181 , pp. 6425-6440
    • Tao, H.1
  • 19
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • R. Breitling et al. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments FEBS Lett. 573 1-3 2004 83 92
    • (2004) FEBS Lett. , vol.573 , Issue.13 , pp. 83-92
    • Breitling, R.1
  • 20
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • S. Dudoi et al. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments Stat. Sinica 12 2002 111 139
    • (2002) Stat. Sinica , vol.12 , pp. 111-139
    • Dudoi, S.1
  • 21
    • 84878989843 scopus 로고    scopus 로고
    • SVOIS: Support Vector Oriented Instance Selection for text classification
    • C.-W. Chih-FongTsain SVOIS: Support Vector Oriented Instance Selection for text classification Inf. Syst. 14 2013
    • (2013) Inf. Syst. , vol.14
    • Chih-Fongtsain, C.-W.1
  • 23
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • D. Singh et al. Gene expression correlates of clinical prostate cancer behavior Cancer Cell 1 2 2002 203 209
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 203-209
    • Singh, D.1
  • 24
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • M.A. Shipp et al. Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning Nat. Med. 8 1 2002 68 74
    • (2002) Nat. Med. , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.A.1
  • 25
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D.A. Notterman, K. Gishdagger, S. Ybarradagger, D. Mackdagger, and A.J. Levine Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proc. Natl. Acad. Sci. USA 96 12 June 1999 6745 6750
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gishdagger, K.4    Ybarradagger, S.5    MacKdagger, D.6    Levine, A.J.7
  • 26
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. Golub et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286 5439 Oct. 1999 531 537
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.1
  • 27
    • 79957597895 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumor outcome based on gene expression
    • S.L. Pomeroy et al. Prediction of central nervous system embryonal tumor outcome based on gene expression Nature 415 2002 265 271
    • (2002) Nature , vol.415 , pp. 265-271
    • Pomeroy, S.L.1
  • 29
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga A review of feature selection techniques in bioinformatics Bioinformatics 23 19 2007 2507 2517
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 30
    • 78951491903 scopus 로고    scopus 로고
    • A review of ensemble methods in bioinformatics
    • P. Yang et al. A review of ensemble methods in bioinformatics Curr. Bioinfor. 5 4 2010 296 308
    • (2010) Curr. Bioinfor. , vol.5 , Issue.4 , pp. 296-308
    • Yang, P.1
  • 33
    • 84899485074 scopus 로고    scopus 로고
    • Information-theoretic selection of high-dimensional spectral features for structural recognition
    • F.E. BoyanBonev Information-theoretic selection of high-dimensional spectral features for structural recognition Comput. Vis. Image Und. 15 2012
    • (2012) Comput. Vis. Image Und. , vol.15
    • Boyanbonev, F.E.1
  • 34
    • 85169548668 scopus 로고
    • NP-completeness of searches for smallest possible featuresets
    • AAAI Press New Orleans
    • S. Davies, and S. Russell NP-completeness of searches for smallest possible featuresets AAI Symposium on Intelligent Relevance 1994 AAAI Press New Orleans 41 43
    • (1994) AAI Symposium on Intelligent Relevance , pp. 41-43
    • Davies, S.1    Russell, S.2
  • 35
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu, and L. Yu Toward integrating feature selection algorithms for classification and clustering IEEE Trans. Knowl. Data Eng. 17 2005 491 502
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 36
    • 78149355539 scopus 로고    scopus 로고
    • Feature selection algorithms: A survey and experimental evaluation
    • IEEE Computer Society, Maebashi City, Japan
    • L.C. Molina, L. Belanche, A. Nebot, Feature selection algorithms: a survey and experimental evaluation, in: Proceedings of IEEE International Conference on Data Mining, IEEE Computer Society, Maebashi City, Japan, 2002, pp. 306-313.
    • (2002) Proceedings of IEEE International Conference on Data Mining , pp. 306-313
    • Molina, L.C.1    Belanche, L.2    Nebot, A.3
  • 37
    • 3042527351 scopus 로고    scopus 로고
    • Fast branch and bound algorithms for optimal feature selection
    • P. Somol, P. Pudil, and J. Kittler Fast branch and bound algorithms for optimal feature selection IEEE Trans. Pattern Anal. 26 2004 900 912
    • (2004) IEEE Trans. Pattern Anal. , vol.26 , pp. 900-912
    • Somol, P.1    Pudil, P.2    Kittler, J.3
  • 38
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann Publishers Inc.
    • M. Hall, Correlation-based feature selection for discrete and numeric class machine learning, in: ICML '00: Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., 2000, pp. 359-366.
    • (2000) ICML '00: Proceedings of the Seventeenth International Conference on Machine Learning , pp. 359-366
    • Hall, M.1
  • 39
    • 84899058122 scopus 로고    scopus 로고
    • Feature selection based on cluster and variability analyses for ordinal multi-class classification problems
    • H.-Y. Lin, Feature selection based on cluster and variability analyses for ordinal multi-class classification problems, Knowledge-Based Syst. (2012) 11.
    • (2012) Knowledge-Based Syst. , pp. 11
    • Lin, H.-Y.1
  • 40
    • 84899486731 scopus 로고    scopus 로고
    • Feature selection using dynamic weights for classification
    • Xin Sun, Yanheng Liu, Mantao Xu, Huiling Chen, Jiawei Han, and Kunhao Wang Feature selection using dynamic weights for classification Knowl. Based Syst. 9 2012
    • (2012) Knowl. Based Syst. , vol.9
    • Sun, X.1    Liu, Y.2    Xu, M.3    Chen, H.4    Han, J.5    Wang, K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.