메뉴 건너뛰기




Volumn 68, Issue 2, 2009, Pages 278-290

Analysis of Naive Bayes' assumptions on software fault data: An empirical study

Author keywords

Empirical study; Naive Bayes; Software defect prediction

Indexed keywords

DEFECTS; ELECTRIC FAULT LOCATION; FORECASTING; NASA;

EID: 57649232840     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2008.10.005     Document Type: Article
Times cited : (128)

References (29)
  • 3
    • 0036041149 scopus 로고    scopus 로고
    • V. Basili, F. McGarry, R. Pajerski, M. Zelkowitz, Lessons learned from 25 years of process improvement: the rise and fall of the nasa software engineering laboratory, in: Proceedings of the 24th International Conference on Software Engineering (ICSE) 2002, Orlando, Florida, 2002.
    • V. Basili, F. McGarry, R. Pajerski, M. Zelkowitz, Lessons learned from 25 years of process improvement: the rise and fall of the nasa software engineering laboratory, in: Proceedings of the 24th International Conference on Software Engineering (ICSE) 2002, Orlando, Florida, 2002.
  • 4
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • Domingos P., and Pazzani M. On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29 2-3 (1997) 103-130
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 5
    • 57649202419 scopus 로고    scopus 로고
    • E. Frank, M. Hall, B. Pfahringer, Locally weighted naive Bayes, in: Proceedings of the Uncertainty in Artificial Intelligence Conference, Acapulco, Mexico, Morgan Kaufmann, 2003, pp. 249-256.
    • E. Frank, M. Hall, B. Pfahringer, Locally weighted naive Bayes, in: Proceedings of the Uncertainty in Artificial Intelligence Conference, Acapulco, Mexico, Morgan Kaufmann, 2003, pp. 249-256.
  • 6
    • 33847166276 scopus 로고    scopus 로고
    • A decision tree-based attribute weighting filter for naive Bayes
    • Hall M. A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems 20 2 (2007) 120-126
    • (2007) Knowledge-Based Systems , vol.20 , Issue.2 , pp. 120-126
    • Hall, M.1
  • 9
    • 0042767590 scopus 로고    scopus 로고
    • Fault prediction modeling for software quality estimation: comparing commonly used techniques
    • Khoshgoftaar T.M., and Seliya N. Fault prediction modeling for software quality estimation: comparing commonly used techniques. Empirical Software Engineering 8 3 (2003) 255-283
    • (2003) Empirical Software Engineering , vol.8 , Issue.3 , pp. 255-283
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 10
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at Forty: the independence assumption in information retrieval
    • Proceedings of the 10th European Conference on Machine Learning. Nedellec C., and Rouveirol C. (Eds), Springer-Verlag, London
    • Lewis D.D. Naive (Bayes) at Forty: the independence assumption in information retrieval. In: Nedellec C., and Rouveirol C. (Eds). Proceedings of the 10th European Conference on Machine Learning. Lecture Notes in Computer Science vol. 1398 (1998), Springer-Verlag, London 4-15
    • (1998) Lecture Notes in Computer Science , vol.1398 , pp. 4-15
    • Lewis, D.D.1
  • 11
    • 57349192830 scopus 로고    scopus 로고
    • J. Lung, J. Aranda, S.M. Easterbrook, G.V. Wilson, On the difficulty of replicating human subjects studies in software engineering, in: Proceedings of the 30th International Conference on Software Engineering, 2008, pp. 191-200.
    • J. Lung, J. Aranda, S.M. Easterbrook, G.V. Wilson, On the difficulty of replicating human subjects studies in software engineering, in: Proceedings of the 30th International Conference on Software Engineering, 2008, pp. 191-200.
  • 14
    • 34548245485 scopus 로고    scopus 로고
    • Problems with precision: a response to comments on data mining static code attributes to learn defect predictors
    • Menzies T., Dekhtyar A., Distefano J., and Greenwald J. Problems with precision: a response to comments on data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering 33 9 (2007) 637-640
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.9 , pp. 637-640
    • Menzies, T.1    Dekhtyar, A.2    Distefano, J.3    Greenwald, J.4
  • 15
    • 0002551285 scopus 로고    scopus 로고
    • Feature selection for unbalanced class distribution and Naive Bayes
    • Bratko I., and Dzeroski S. (Eds), Morgan Kaufmann Publishers, San Francisco, CA
    • Mladenic D., and Grobelnik M. Feature selection for unbalanced class distribution and Naive Bayes. In: Bratko I., and Dzeroski S. (Eds). Proceedings of the Sixteenth International Conference on Machine Learning (1999), Morgan Kaufmann Publishers, San Francisco, CA 258-267
    • (1999) Proceedings of the Sixteenth International Conference on Machine Learning , pp. 258-267
    • Mladenic, D.1    Grobelnik, M.2
  • 16
    • 46449134714 scopus 로고
    • Regression modelling of software quality: empirical investigation
    • Munson J., and Khoshgoftaar T.M. Regression modelling of software quality: empirical investigation. Journal of Electronic Materials 19 6 (1990) 106-114
    • (1990) Journal of Electronic Materials , vol.19 , Issue.6 , pp. 106-114
    • Munson, J.1    Khoshgoftaar, T.M.2
  • 18
    • 57649167287 scopus 로고    scopus 로고
    • Nasa/Wvu IV&V Facility, Metrics Data Program, 2007. Available from: (Internet, accessed 2007).
    • Nasa/Wvu IV&V Facility, Metrics Data Program, 2007. Available from: (Internet, accessed 2007).
  • 19
    • 48649106337 scopus 로고    scopus 로고
    • A.D. Oral, A. Bener, Defect prediction for embedded software, in: Proceedings of the 22nd International Symposium on Computer and Information Sciences, 2007, pp. 1-6.
    • A.D. Oral, A. Bener, Defect prediction for embedded software, in: Proceedings of the 22nd International Symposium on Computer and Information Sciences, 2007, pp. 1-6.
  • 20
    • 0742321260 scopus 로고    scopus 로고
    • Using machine learning for estimating the defect content after an inspection
    • Padberg F., Ragg T., and Schoknecht R. Using machine learning for estimating the defect content after an inspection. IEEE Transactions on Software Engineering 30 1 (2004) 17-28
    • (2004) IEEE Transactions on Software Engineering , vol.30 , Issue.1 , pp. 17-28
    • Padberg, F.1    Ragg, T.2    Schoknecht, R.3
  • 23
    • 0035170677 scopus 로고    scopus 로고
    • B.V. Tahat, B. Korel, A. Bader, Requirement-based automated black-box test generation, in: Proceedings of the 25th Annual International Computer Software and Applications Conference, Chicago, Illinois, 2001, pp. 489-495.
    • B.V. Tahat, B. Korel, A. Bader, Requirement-based automated black-box test generation, in: Proceedings of the 25th Annual International Computer Software and Applications Conference, Chicago, Illinois, 2001, pp. 489-495.
  • 24
    • 46449116712 scopus 로고    scopus 로고
    • B. Turhan, A. Bener, Software defect prediction: heuristics for weighted Naive Bayes, in: Proceedings of the 7th International Conference on Quality Software, 2007, pp. 231-237.
    • B. Turhan, A. Bener, Software defect prediction: heuristics for weighted Naive Bayes, in: Proceedings of the 7th International Conference on Quality Software, 2007, pp. 231-237.
  • 25
    • 84875426543 scopus 로고    scopus 로고
    • B. Turhan, A. Bener, Weighted static code attributes for software defect prediction, in: Proceedings of the 20th International Conference on Software Engineering and Knowledge Engineering, 2008, pp.143-148.
    • B. Turhan, A. Bener, Weighted static code attributes for software defect prediction, in: Proceedings of the 20th International Conference on Software Engineering and Knowledge Engineering, 2008, pp.143-148.
  • 26
    • 57049185645 scopus 로고    scopus 로고
    • B. Turhan, A. Bener, A multivariate analysis of static code attributes for defect prediction, in: Proceedings of the 2nd International Conference on Software and Data Technologies, 2007, pp. 244-249.
    • B. Turhan, A. Bener, A multivariate analysis of static code attributes for defect prediction, in: Proceedings of the 2nd International Conference on Software and Data Technologies, 2007, pp. 244-249.
  • 27
    • 19544366243 scopus 로고    scopus 로고
    • H. Zhang, S. Sheng, Learning weighted naive Bayes with accurate ranking, in: Proceedings of the 4th IEEE International Conference on Data Mining, 2004, pp. 567-570.
    • H. Zhang, S. Sheng, Learning weighted naive Bayes with accurate ranking, in: Proceedings of the 4th IEEE International Conference on Data Mining, 2004, pp. 567-570.
  • 28
    • 34548253429 scopus 로고    scopus 로고
    • Comments on 'data mining static code attributes to learn defect predictors'
    • Zhang H., and Zhang X. Comments on 'data mining static code attributes to learn defect predictors'. IEEE Transactions on Software Engineering 33 9 (2007) 635-636
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.9 , pp. 635-636
    • Zhang, H.1    Zhang, X.2
  • 29
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Zheng Z., and Webb G.I. Lazy learning of Bayesian rules. Machine Learning 41 1 (2000) 53-84
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.