메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Mixed optimization for smooth functions

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; FUNCTIONS; STOCHASTIC SYSTEMS;

EID: 84898988901     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (45)

References (24)
  • 2
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett., 31(3):167-175, 2003.
    • (2003) Oper. Res. Lett. , vol.31 , Issue.3 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 3
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, pages 161-168, 2008.
    • (2008) NIPS , pp. 161-168
    • Bottou, L.1    Bousquet, O.2
  • 6
    • 84865685824 scopus 로고    scopus 로고
    • Sample size selection in optimization methods for machine learning
    • R. H. Byrd, G. M. Chin, J. Nocedal, and Y.Wu. Sample size selection in optimization methods for machine learning. Mathematical programming, 134(1):127-155, 2012.
    • (2012) Mathematical Programming , vol.134 , Issue.1 , pp. 127-155
    • Byrd, R.H.1    Chin, G.M.2    Nocedal, J.3    Wu, Y.4
  • 7
    • 85162498265 scopus 로고    scopus 로고
    • Better mini-batch algorithms via accelerated gradient methods
    • A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch algorithms via accelerated gradient methods. In NIPS, pages 1647-1655, 2011.
    • (2011) NIPS , pp. 1647-1655
    • Cotter, A.1    Shamir, O.2    Srebro, N.3    Sridharan, K.4
  • 10
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 69(2-3):169-192, 2007.
    • (2007) Machine Learning , vol.69 , Issue.2-3 , pp. 169-192
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 11
    • 84898471955 scopus 로고    scopus 로고
    • Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
    • E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. Journal of Machine Learning Research-Proceedings Track, 19:421-436, 2011.
    • (2011) Journal of Machine Learning Research-Proceedings Track , vol.19 , pp. 421-436
    • Hazan, E.1    Kale, S.2
  • 13
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. on Optimization, 19:1574-1609, 2009.
    • (2009) SIAM J. on Optimization , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 15
    • 34548480020 scopus 로고
    • A method of solving a convex programming problem with convergence rate o (1/k2)
    • Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372-376, 1983.
    • (1983) Soviet Mathematics Doklady , vol.27 , pp. 372-376
    • Nesterov, Y.1
  • 17
    • 33144470576 scopus 로고    scopus 로고
    • Excessive gap technique in nonsmooth convex minimization
    • Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal on Optimization, 16(1):235-249, 2005.
    • (2005) SIAM Journal on Optimization , vol.16 , Issue.1 , pp. 235-249
    • Nesterov, Y.1
  • 18
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127-152, 2005.
    • (2005) Math. Program. , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 19
    • 84867120686 scopus 로고    scopus 로고
    • Making gradient descent optimal for strongly convex stochastic optimization
    • A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex stochastic optimization. In ICML, 2012.
    • (2012) ICML
    • Rakhlin, A.1    Shamir, O.2    Sridharan, K.3
  • 20
    • 84877725219 scopus 로고    scopus 로고
    • A stochastic gradient method with an exponential convergence rate for finite training sets
    • N. L. Roux, M. W. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for finite training sets. In NIPS, pages 2672-2680, 2012.
    • (2012) NIPS , pp. 2672-2680
    • Roux, N.L.1    Schmidt, M.W.2    Bach, F.3
  • 21
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pages 807-814, 2007.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 22
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. JMLR, 14:567599, 2013.
    • (2013) JMLR , vol.14 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 23
    • 84897554805 scopus 로고    scopus 로고
    • Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes
    • O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. ICML, 2013.
    • (2013) ICML
    • Shamir, O.1    Zhang, T.2
  • 24
    • 84897492359 scopus 로고    scopus 로고
    • O(logt) projections for stochastic optimization of smooth and strongly convex functions
    • L. Zhang, T. Yang, R. Jin, and X. He. O(logt) projections for stochastic optimization of smooth and strongly convex functions. ICML, 2013.
    • (2013) ICML
    • Zhang, L.1    Yang, T.2    Jin, R.3    He, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.