메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Lasso screening rules via Dual Polytope Projection

Author keywords

[No Author keywords available]

Indexed keywords

OPTIMIZATION;

EID: 84898971144     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (125)

References (29)
  • 3
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51:34-81, 2009.
    • (2009) SIAM Review , vol.51 , pp. 34-81
    • Bruckstein, A.1    Donoho, D.2    Elad, M.3
  • 5
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Review, 43:129-159, 2001.
    • (2001) SIAM Review , vol.43 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 6
    • 55349134896 scopus 로고    scopus 로고
    • Fast solution of l-1 norm minimization problems when the solution may be sparse
    • D. L. Donoho and Y. Tsaig. Fast solution of l-1 norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory, 54:4789-4812, 2008.
    • (2008) IEEE Transactions on Information Theory , vol.54 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 9
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature spaces
    • J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature spaces. Journal of the Royal Statistical Society Series B, 70:849-911, 2008.
    • (2008) Journal of the Royal Statistical Society Series B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33:1-22, 2010.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 84867135375 scopus 로고    scopus 로고
    • Complexity analysis of the lasso regularization path
    • J. Mairal and B. Yu. Complexity analysis of the lasso regularization path. In ICML, 2012.
    • (2012) ICML
    • Mairal, J.1    Yu, B.2
  • 24
    • 62549115747 scopus 로고    scopus 로고
    • Genomewide association analysis by lasso penalized logistic regression
    • T. T. Wu, Y. F. Chen, T. Hastie, E. Sobel, and K. Lange. Genomewide association analysis by lasso penalized logistic regression. Bioinformatics, 25:714-721, 2009.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.4    Lange, K.5
  • 25
    • 84899033160 scopus 로고    scopus 로고
    • Fast lasso screening tests based on correlations
    • Z. J. Xiang and P. J. Ramadge. Fast lasso screening tests based on correlations. In IEEE ICASSP, 2012.
    • (2012) IEEE ICASSP
    • Xiang, Z.J.1    Ramadge, P.J.2
  • 26
    • 85162409960 scopus 로고    scopus 로고
    • Learning sparse representation of high dimensional data on large scale dictionaries
    • Z. J. Xiang, H. Xu, and P. J. Ramadge. Learning sparse representation of high dimensional data on large scale dictionaries. In NIPS, 2011.
    • (2011) NIPS
    • Xiang, Z.J.1    Xu, H.2    Ramadge, P.J.3
  • 27
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 68:49-67, 2006.
    • (2006) Journal of the Royal Statistical Society Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 28
  • 29
    • 80052666240 scopus 로고    scopus 로고
    • A multi-task learning formulation for predicting disease progression
    • ACM
    • J. Zhou, L. Yuan, J. Liu, and J. Ye. A multi-task learning formulation for predicting disease progression. In KDD, pages 814-822. ACM, 2011.
    • (2011) KDD , pp. 814-822
    • Zhou, J.1    Yuan, L.2    Liu, J.3    Ye, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.