메뉴 건너뛰기




Volumn 13, Issue 2, 2014, Pages 203-216

Improved variational Bayes inference for transcript expression estimation

Author keywords

BitSeq; Generalized Dirichlet distribution; Kullback Leibler divergence; Marginal likelihood bound; Mixture model

Indexed keywords

ARTICLE; METHODOLOGY; MONTE CARLO METHOD; MOUSE; NONHUMAN; RNA SEQUENCE; SIMULATION; STOCHASTIC MODEL; VARIATIONAL BAYESIAN TECHNIQUE; ALGORITHM; BAYES THEOREM; COMPUTER SIMULATION; GENE EXPRESSION; GENETIC TRANSCRIPTION; HIGH THROUGHPUT SEQUENCING; MARKOV CHAIN; PROCEDURES; SEQUENCE ANALYSIS;

EID: 84898659983     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.1515/sagmb-2013-0054     Document Type: Article
Times cited : (12)

References (32)
  • 1
    • 13844295342 scopus 로고    scopus 로고
    • The variational Bayesian em algorithm for incomplete data: With application to scoring graphical model structures
    • Beal, M. and Z. Ghahramani (2003): "The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures, " Bayesian Statisctics, 7, 453-463.
    • (2003) Bayesian Statisctics , vol.7 , pp. 453-463
    • Beal, M.1    Ghahramani, Z.2
  • 3
    • 4043061882 scopus 로고    scopus 로고
    • Variational bayesian model selection for mixture distributions
    • Jaakkola, T., Richardson, T. (Eds.)
    • Corduneanu, A. and C. M. Bishop (2001): Variational bayesian model selection for mixture distributions. In: Jaakkola, T., Richardson, T. (Eds.), Artificial Intelligence and Statistics, 2001, pp. 27-34.
    • (2001) Artificial Intelligence and Statistics , vol.2001 , pp. 27-34
    • Corduneanu, A.1    Bishop, C.M.2
  • 4
  • 5
    • 33750369868 scopus 로고    scopus 로고
    • Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques
    • Fruhwirth-Schnatter, S. (2004): "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques, " The Econometrics Journal, 7, 143-167.
    • (2004) The Econometrics Journal , vol.7 , pp. 143-167
    • Fruhwirth-Schnatter, S.1
  • 7
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand, A. and A. Smith (1990): "Sampling-based approaches to calculating marginal densities, " Journal of American Statistical Association, 85, 398-409.
    • (1990) Journal of American Statistical Association , vol.85 , pp. 398-409
    • Gelfand, A.1    Smith, A.2
  • 8
    • 84863992953 scopus 로고    scopus 로고
    • Identifying differentially expressed transcripts from RNA-Seq data with biological variation
    • Glaus, P., A. Honkela, and M. Rattray (2012): "Identifying differentially expressed transcripts from RNA-Seq data with biological variation, " Bioinformatics, 28, 1721-1728.
    • (2012) Bioinformatics , vol.28 , pp. 1721-1728
    • Glaus, P.1    Honkela, A.2    Rattray, M.3
  • 10
    • 84877726166 scopus 로고    scopus 로고
    • Fast variational inference in the conjugate exponential family
    • Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K., (Eds.), URL
    • Hensman, J., M. Rattray, and N. D. Lawrence (2012) Fast variational inference in the conjugate exponential family. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K., (Eds.), Advances in Neural Information Processing Systems 25, pp. 2897-2905, URL http://books.nips.cc/papers/files/ nips25/NIPS2012-1314.pdf.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2897-2905
    • Hensman, J.1    Rattray, M.2    Lawrence, N.D.3
  • 12
    • 22544479764 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • Jasra, A., C. Holmes, and D. Stephens (2005): "Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling, " Statistical Science, 20, 50-67.
    • (2005) Statistical Science , vol.20 , pp. 50-67
    • Jasra, A.1    Holmes, C.2    Stephens, D.3
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M., Z. Ghahramani, T. Jaakola, and L. Saul (1999): "An introduction to variational methods for graphical models, " Machine Learning, 37, 183-233.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakola, T.3    Saul, L.4
  • 14
    • 78649714014 scopus 로고    scopus 로고
    • Analysis and design of RNA sequencing experiments for identifying isoform regulation
    • Katz, Y., E. Wang, E. Airoldi, and C. Burge (2010): "Analysis and design of RNA sequencing experiments for identifying isoform regulation, " Nat Methods, 7, 1009-1015.
    • (2010) Nat Methods , vol.7 , pp. 1009-1015
    • Katz, Y.1    Wang, E.2    Airoldi, E.3    Burge, C.4
  • 15
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead, B., C. Trapnell, M. Pop, and S. Salzberg (2009): "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, " Genome Biology, 10, R25.
    • (2009) Genome Biology , vol.10
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.4
  • 16
    • 77949507153 scopus 로고    scopus 로고
    • RNA-Seq gene expression estimation with read mapping uncertainty
    • Li, B., V. Ruotti, R. Stewart, J. Thomson, and D. CN. (2010): "RNA-Seq gene expression estimation with read mapping uncertainty, " Bioinformatics, 26, 493-500.
    • (2010) Bioinformatics , vol.26 , pp. 493-500
    • Li, B.1    Ruotti, V.2    Stewart, R.3    Thomson, J.4    Cn, D.5
  • 17
    • 33748644662 scopus 로고    scopus 로고
    • Probe-level measurement error improves accuracy in detecting differential gene expression
    • Liu, X., M. Milo, N. Lawrence, and M. Rattray (2006): "Probe-level measurement error improves accuracy in detecting differential gene expression, " Bioinformatics, 22, 2107-2113.
    • (2006) Bioinformatics , vol.22 , pp. 2107-2113
    • Liu, X.1    Milo, M.2    Lawrence, N.3    Rattray, M.4
  • 18
    • 33750274518 scopus 로고    scopus 로고
    • Bayesian modelling and inference on mixtures of distributions
    • Marin, J., K. Mengerson, and C. Robert (2005): "Bayesian modelling and inference on mixtures of distributions, " Handbook of Statistics, 25, 577-590.
    • (2005) Handbook of Statistics , vol.25 , pp. 577-590
    • Marin, J.1    Mengerson, K.2    Robert, C.3
  • 19
    • 50649089207 scopus 로고    scopus 로고
    • RNA-Seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni, J., C. Mason, S. Mane, M. Stephens, and Y. Gilad (2008): "RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays, " Genome Research, 18, 1509-1517.
    • (2008) Genome Research , vol.18 , pp. 1509-1517
    • Marioni, J.1    Mason, C.2    Mane, S.3    Stephens, M.4    Gilad, Y.5
  • 20
    • 34247869715 scopus 로고    scopus 로고
    • Variational approximations in Bayesian model selection for finite mixture distributions
    • McGrory, C. and D. Titterington (2007): "Variational approximations in Bayesian model selection for finite mixture distributions, " Computational Statistics and Data Analysis, 51, 5352-5367.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 5352-5367
    • McGrory, C.1    Titterington, D.2
  • 22
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi, A., B. Williams, K. McCue, L. Schaeffer, and B. Wold (2008): "Mapping and quantifying mammalian transcriptomes by RNA-Seq, " Nat Methods, 5, 621-628.
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.2    McCue, K.3    Schaeffer, L.4    Wold, B.5
  • 23
    • 84883472446 scopus 로고    scopus 로고
    • TIGAR: Transcript isoform abundance estimation method with gapped alignment of RNA-seq data by variational Bayesian inference
    • Nariai, N., O. Hirose, K. Kojima, and M. Nagasaki (2013): "TIGAR: transcript isoform abundance estimation method with gapped alignment of RNA-seq data by variational Bayesian inference, " Bioinformatics, 29, 2292-2299.
    • (2013) Bioinformatics , vol.29 , pp. 2292-2299
    • Nariai, N.1    Hirose, O.2    Kojima, K.3    Nagasaki, M.4
  • 25
    • 0026839090 scopus 로고
    • Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
    • Spall, J. (1992): "Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, " IEEE Transactions on Automatic Control, 37, 332-341.
    • (1992) IEEE Transactions on Automatic Control , vol.37 , pp. 332-341
    • Spall, J.1
  • 26
    • 0034290982 scopus 로고    scopus 로고
    • Adaptive stochastic approximation by the simultaneous perturbation method
    • Spall, J. (2000): "Adaptive stochastic approximation by the simultaneous perturbation method, " IEEE Transactions on Automatic Control, 45, 1839-1853.
    • (2000) IEEE Transactions on Automatic Control , vol.45 , pp. 1839-1853
    • Spall, J.1
  • 27
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. and W. Wong (1987): "The calculation of posterior distributions by data augmentation, " Journal of the American Statistical Association, 82, 528-540.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 28
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • Trapnell, C., L. Pachter, and S. Salzberg (2009): "TopHat: discovering splice junctions with RNA-Seq, " Bioinformatics, 25, 1105-1111.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.3
  • 29
    • 79751531332 scopus 로고    scopus 로고
    • Haplotype and isoform specific expression estimation using multi-mapping RNA-Seq reads
    • Turro, E., S. Su, A. Goncalves, L. Coin, S. Richardson, and A. Lewin (2011): "Haplotype and isoform specific expression estimation using multi-mapping RNA-Seq reads, " Genome Biology, 12, R13.
    • (2011) Genome Biology , vol.12
    • Turro, E.1    Su, S.2    Goncalves, A.3    Coin, L.4    Richardson, S.5    Lewin, A.6
  • 30
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang, Z., M. Gerstein, and M. Snyder (2009): "RNA-Seq: a revolutionary tool for transcriptomics, " Nat Rev Genet., 10, 57-63.
    • (2009) Nat Rev Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 31
    • 10044292323 scopus 로고    scopus 로고
    • Generalized Dirichlet distribution in Bayesian analysis
    • Wong, T. (1998): "Generalized Dirichlet distribution in Bayesian analysis, " Applied Mathematics and Computation, 97, 165-181.
    • (1998) Applied Mathematics and Computation , vol.97 , pp. 165-181
    • Wong, T.1
  • 32
    • 77949570275 scopus 로고    scopus 로고
    • Parameter estimation for generalized Dirichlet distributions from the sample estimates of the first and the second moments of random variables
    • Wong, T. (2010): "Parameter estimation for generalized Dirichlet distributions from the sample estimates of the first and the second moments of random variables, " Computational Statistics and Data Analysis, 54, 1756-1765.
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 1756-1765
    • Wong, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.