메뉴 건너뛰기




Volumn , Issue , 2012, Pages 297-327

Data clustering algorithms using rough sets

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84898501985     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-46662-518-1.ch012     Document Type: Chapter
Times cited : (14)

References (60)
  • 4
    • 67649969214 scopus 로고    scopus 로고
    • "Best k": Critical clustering structures in categorical datasets
    • doi:10.1007/s10115-008-0159-x
    • Chen, K., & Liu, L. (2009). "Best K": Critical clustering structures in categorical datasets. Knowledge and Information Systems, 20, 1-33. doi:10.1007/s10115-008-0159-x
    • (2009) Knowledge and Information Systems , vol.20 , pp. 1-33
    • Chen, K.1    Liu, L.2
  • 7
    • 0034133769 scopus 로고    scopus 로고
    • Clustering categorical data: An approach based on dynamical systems
    • doi:10.1007/s007780050005
    • Gibson, D., Kleinberg, J., & Raghavan, P. (2000). Clustering categorical data: An approach based on dynamical systems. The Very Large Data Bases Journal, 8(3-4), 222-236d. doi:10.1007/s007780050005
    • (2000) The Very Large Data Bases Journal , vol.8 , Issue.4 , pp. 222-236
    • Gibson, D.1    Kleinberg, J.2    Raghavan, P.3
  • 8
    • 0034228041 scopus 로고    scopus 로고
    • Rock: A robust clustering algorithm for categorical attributes
    • doi:10.1016/S0306-4379(00)00022-3
    • Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: A robust clustering algorithm for categorical attributes. Information Systems, 25(5), 345-366. doi:10.1016/S0306-4379(00)00022-3
    • (2000) Information Systems , vol.25 , Issue.5
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 0024735126 scopus 로고
    • Classification of radar signatures by autoregressive model fitting and cluster analysis
    • doi:10.1109/TGRS.1989.35943
    • Haimov, S., Michalev, M., Savchenko, A., & Yordanov, O. (1989). Classification of radar signatures by autoregressive model fitting and cluster analysis. IEEE Transactions on Geoscience and Remote Sensing, 8(1), 606-610. doi:10.1109/TGRS.1989.35943
    • (1989) IEEE Transactions on Geoscience and Remote Sensing , vol.8 , Issue.1
    • Haimov, S.1    Michalev, M.2    Savchenko, A.3    Yordanov, O.4
  • 12
    • 0001138328 scopus 로고
    • Algorithm as136: A k-means clustering algorithm
    • doi:10.2307/2346830
    • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS136: A k-means clustering algorithm. Applied Statistics, 28, 100-108. doi:10.2307/2346830
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 13
    • 0036740348 scopus 로고    scopus 로고
    • Squeezer: An efficient algorithm for clustering categorical data
    • doi:10.1007/BF02948829
    • He, Z., Xu, X., & Deng, S. (2002). Squeezer: An efficient algorithm for clustering categorical data. Journal of Computer Science & Technology, 17(5), 611-624. doi:10.1007/BF02948829
    • (2002) Journal of Computer Science & Technology , vol.17 , Issue.5
    • He, Z.1    Xu, X.2    Deng, S.3
  • 14
    • 80052305635 scopus 로고    scopus 로고
    • A link clustering based approach for clustering categorical data
    • Retrieved from
    • He, Z., Xu, X., & Deng, S. (2004). A link clustering based approach for clustering categorical data. Proceedings of the WAIM Conference. Retrieved from http://xxx.sf.nchc.org.tw/ftp/cs/papers/0412/0412019.pdf
    • (2004) Proceedings of the WAIM Conference
    • He, Z.1    Xu, X.2    Deng, S.3
  • 16
    • 0033906937 scopus 로고    scopus 로고
    • Rough clustering and its application to medicine
    • Hirano, S., & Tsumoto, S. (2000). Rough clustering and its application to medicine. Information Sciences, 124, 125-137.
    • (2000) Information Sciences , vol.124 , pp. 125-137
    • Hirano, S.1    Tsumoto, S.2
  • 17
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • doi:10.1023/A:1009769707641
    • Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3), 283-304. doi:10.1023/A:1009769707641
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 18
  • 21
    • 23844536246 scopus 로고    scopus 로고
    • Fuzzy clustering of categorical data using fuzzy centroid
    • doi:10.1016/j.patrec.2004.04.004
    • Kim, D., Lee, K., & Lee, D. (2004). Fuzzy clustering of categorical data using fuzzy centroid. Pattern Recognition Letters, 25(11), 1263-1271. doi:10.1016/j.patrec.2004.04.004
    • (2004) Pattern Recognition Letters , vol.25 , Issue.11
    • Kim, D.1    Lee, K.2    Lee, D.3
  • 23
    • 0029245943 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation
    • doi:10.1109/91.366564
    • Krishnapuram, R., Frigui, H., & Nasraoui, O. (1995). Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Transactions on Fuzzy Systems, 3(1), 29-60. doi:10.1109/91.366564
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.1
    • Krishnapuram, R.1    Frigui, H.2    Nasraoui, O.3
  • 24
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • doi:10.1109/91.227387
    • Krishnapuram, R., & Keller, J. (1993). A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1(2), 98-110. doi:10.1109/91.227387
    • (1993) IEEE Transactions on Fuzzy Systems , vol.1 , Issue.2
    • Krishnapuram, R.1    Keller, J.2
  • 25
    • 0035416470 scopus 로고    scopus 로고
    • Unsupervised rough set classification using gas
    • doi:10.1023/A:1011219918340
    • Lingras, P. (2001). Unsupervised rough set classification using GAs. Journal of Intelligent Information Systems, 16(3), 215-228. doi:10.1023/A:1011219918340
    • (2001) Journal of Intelligent Information Systems , vol.16 , Issue.3 , pp. 215-228
    • Lingras, P.1
  • 26
    • 38149094907 scopus 로고    scopus 로고
    • Applications of rough set based k-means
    • Kohonen SOM, GA clustering. In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Heidelberg, Germany: Springer. doi:10.1007/978-3-540-71663-1_8
    • Lingras, P. (2007). Applications of rough set based k-means. Kohonen SOM, GA clustering. In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Transactions on Rough Sets VII, LNCS (Vol. 4400, pp. 120-139). Heidelberg, Germany: Springer. doi:10.1007/978-3-540-71663-1_8
    • (2007) Transactions on Rough Sets VII, LNCS , vol.4400 , pp. 120-139
    • Lingras, P.1
  • 27
    • 57049184601 scopus 로고    scopus 로고
    • Precision of rough set clustering
    • In Chan, C. C. (Eds.)
    • Lingras, P., Chen, M., & Miao, D. (2008). Precision of rough set clustering. In Chan, C. C. (Eds.), RSCTC 2008, LNAI 5306 (pp. 369-378).
    • (2008) RSCTC 2008, LNAI 5306 , pp. 369-378
    • Lingras, P.1    Chen, M.2    Miao, D.3
  • 28
    • 11144312947 scopus 로고    scopus 로고
    • Interval set clustering of web users using modified kohonen self-organizing maps based on the properties of rough sets
    • Lingras, P., Hogo, M., & Snorek, M. (2004). Interval set clustering of web users using modified Kohonen self-organizing maps based on the properties of rough sets. Web Intelligence and Agent Systems, 2(3), 217-225.
    • (2004) Web Intelligence and Agent Systems , vol.2 , Issue.3
    • Lingras, P.1    Hogo, M.2    Snorek, M.3
  • 29
    • 18144396167 scopus 로고    scopus 로고
    • Temporal analysis of clusters of super-market customers: Conventional versus interval set approach
    • doi:10.1016/j.ins.2004.12.007
    • Lingras, P., Hogo, M., Snorek, M., & West, C. (2005). Temporal analysis of clusters of super-market customers: Conventional versus interval set approach. Information Science, 172, 215-240. doi:10.1016/j.ins.2004.12.007
    • (2005) Information Science , vol.172 , pp. 215-240
    • Lingras, P.1    Hogo, M.2    Snorek, M.3    West, C.4
  • 30
    • 84864757317 scopus 로고    scopus 로고
    • Rough clustering
    • [John Wiley and Sons, Inc.], doi:10.1002/widm.16
    • Lingras, P., & Peters, G. (2011). Rough clustering. [John Wiley and Sons, Inc.]. WIREs Data Mining Knowledge Discovery, 1, 64-72. doi:10.1002/widm.16
    • (2011) WIREs Data Mining Knowledge Discovery , vol.1 , pp. 64-72
    • Lingras, P.1    Peters, G.2
  • 31
    • 3042789571 scopus 로고    scopus 로고
    • Interval set clustering of web users with rough k-means
    • doi:10.1023/B:JIIS.0000029668.88665.1a
    • Lingras, P., & West, C. (2004). Interval set clustering of web users with rough K-means. Journal of Intelligent Information Systems, 23(1), 5-16. doi:10.1023/B:JIIS.0000029668.88665.1a
    • (2004) Journal of Intelligent Information Systems , vol.23 , Issue.1 , pp. 5-16
    • Lingras, P.1    West, C.2
  • 33
    • 8344234993 scopus 로고    scopus 로고
    • Comparison of conventional and rough k-means clustering
    • In Wang, G., Lin, Q., Yao, Y., & Skowron, A. (Eds.), Vol, Heidelberg, Germany: Springer. doi:10.1007/3-540-39205-X_17
    • Lingras, P., Yan, R., & West, C. (2003). Comparison of conventional and rough k-means clustering. In Wang, G., Lin, Q., Yao, Y., & Skowron, A. (Eds.), RSFDGrC 2003, LNCS (LNAI) (Vol. 2639, pp. 130-137). Heidelberg, Germany: Springer. doi:10.1007/3-540-39205-X_17
    • (2003) RSFDGrC 2003, LNCS (LNAI) , vol.2639 , pp. 130-137
    • Lingras, P.1    Yan, R.2    West, C.3
  • 34
    • 0020102027 scopus 로고
    • Least square quantization in pcm
    • doi:10.1109/TIT.1982.1056489
    • Lloyd, S. P. (1982). Least square quantization in PCM. IEEE Transactions on Information Theory, 28, 128-137. doi:10.1109/TIT.1982.1056489
    • (1982) IEEE Transactions on Information Theory , vol.28 , pp. 128-137
    • Lloyd, S.P.1
  • 36
    • 0027641106 scopus 로고    scopus 로고
    • A methodology for large scale r&d planning based on cluster analysis
    • doi:10.1109/17.233190
    • Mathieu, R., & Gibson, J. (2004). A methodology for large scale R&D planning based on cluster analysis. IEEE Transactions on Engineering Management, 40(3), 283-292. doi:10.1109/17.233190
    • (2004) IEEE Transactions on Engineering Management , vol.40 , Issue.3
    • Mathieu, R.1    Gibson, J.2
  • 38
    • 4544352979 scopus 로고    scopus 로고
    • An evolutionary rough partitive clustering
    • doi:10.1016/j.patrec.2004.05.007
    • Mitra, S. (2004). An evolutionary rough partitive clustering. Pattern Recognition Letters, 25, 1439-1449. doi:10.1016/j.patrec.2004.05.007
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1439-1449
    • Mitra, S.1
  • 40
    • 79851496548 scopus 로고    scopus 로고
    • Rough document clustering and the internet
    • In Pedrycz, W., Skowron, A., & Kreinovich, V. (Eds.), Wiley
    • Nguyen, H. S. (2007). Rough document clustering and the internet. In Pedrycz, W., Skowron, A., & Kreinovich, V. (Eds.), Handbook of granular computing. Wiley.
    • (2007) Handbook of Granular Computing
    • Nguyen, H.S.1
  • 41
    • 34548666399 scopus 로고    scopus 로고
    • Mmr: An algorithm for clustering categorical data using rough set theory
    • doi:10.1016/j.datak.2007.05.005
    • Parmar, D., Wu, T., & Blackhurst, J. (2007). MMR: An algorithm for clustering categorical data using Rough Set Theory. Data & Knowledge Engineering, 63, 879-893. doi:10.1016/j.datak.2007.05.005
    • (2007) Data & Knowledge Engineering , vol.63 , pp. 879-893
    • Parmar, D.1    Wu, T.2    Blackhurst, J.3
  • 44
    • 33646419553 scopus 로고    scopus 로고
    • Some refinements of rough kmeans
    • doi:10.1016/j.patcog.2006.02.002
    • Peters, G. (2006). Some refinements of rough kmeans. Pattern Recognition, 39(8), 1481-1491. doi:10.1016/j.patcog.2006.02.002
    • (2006) Pattern Recognition , vol.39 , Issue.8
    • Peters, G.1
  • 46
    • 50949130691 scopus 로고    scopus 로고
    • Evolutionary rough k-medoids clustering
    • In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Vol, Heidelberg, Germany: Springer
    • Peters, G., Lampart, M., & Weber, R. (2007). Evolutionary rough k-medoids clustering. In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Transactions on Rough Sets VII, LNCS (Vol. 4400, pp. 289-306). Heidelberg, Germany: Springer.
    • (2007) Transactions on Rough Sets VII, LNCS , vol.4400 , pp. 289-306
    • Peters, G.1    Lampart, M.2    Weber, R.3
  • 48
    • 57049089360 scopus 로고    scopus 로고
    • A dynamic approach to rough clustering
    • In Chan, C. C. (Eds.)
    • Peters, G., & Weber, R. (2008). A dynamic approach to rough clustering. In Chan, C. C. (Eds.), RSCTC 2008, LNAI 5306 (pp. 379-388).
    • (2008) RSCTC 2008, LNAI 5306 , pp. 379-388
    • Peters, G.1    Weber, R.2
  • 49
    • 0029415780 scopus 로고
    • A conceptual version of the k-means algorithm
    • doi:10.1016/0167-8655(95)00075-R
    • Ralambondrainy, H. (1995). A conceptual version of the K-means algorithm. Pattern Recognition Letters, 16(11), 1147-1157. doi:10.1016/0167-8655(95)00075-R
    • (1995) Pattern Recognition Letters , vol.16 , Issue.11
    • Ralambondrainy, H.1
  • 50
    • 0014534297 scopus 로고
    • A new approach to clustering
    • doi:10.1016/S0019-9958(69)90591-9
    • Ruspini, E. (1969). A new approach to clustering. Information and Control, 15(1), 22-32. doi:10.1016/S0019-9958(69)90591-9
    • (1969) Information and Control , vol.15 , Issue.1
    • Ruspini, E.1
  • 52
    • 84898531112 scopus 로고    scopus 로고
    • Ssdr: An algorithm for clustering categorical data using rough set theory
    • Tripathy, B. K., & Ghosh, A. (2011b). SSDR: An algorithm for clustering categorical data using rough set theory. Journal of Advances in Applied Science Research, 2(3), 314-326.
    • (2011) Journal of Advances in Applied Science Research , vol.2 , Issue.3
    • Tripathy, B.K.1    Ghosh, A.2
  • 54
    • 35048868300 scopus 로고    scopus 로고
    • Generating compact rough cluster descriptions using an evolutionary algorithm
    • In Deb, K. (Ed.), Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-540-24855-2_152
    • Voges, K., & Pope, N. (2004). Generating compact rough cluster descriptions using an evolutionary algorithm. In Deb, K. (Ed.), GECCO2004: Genetic and Evolutionary Algorithm Conference - LNCS (pp. 1332-1333). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-540-24855-2_152
    • (2004) GECCO2004: Genetic and Evolutionary Algorithm Conference - LNCS , pp. 1332-1333
    • Voges, K.1    Pope, N.2
  • 55
    • 34447341411 scopus 로고    scopus 로고
    • Cluster analysis of marketing data examining on-line shopping orientation: A comparison of k-means and rough clustering approaches
    • In Abbass, H. A., Sarkar, R. A., & Newton, C. S. (Eds.), Hershey, PA: Idea Group Publishing
    • Voges, K., Pope, N., & Brown, M. (2002). Cluster analysis of marketing data examining on-line shopping orientation: A comparison of K-means and rough clustering approaches. In Abbass, H. A., Sarkar, R. A., & Newton, C. S. (Eds.), Heuristics and Optimization for Knowledge Discovery (pp. 207-224). Hershey, PA: Idea Group Publishing.
    • (2002) Heuristics and Optimization for Knowledge Discovery , pp. 207-224
    • Voges, K.1    Pope, N.2    Brown, M.3
  • 56
    • 0036464416 scopus 로고    scopus 로고
    • Segmentation of dynamic pet images using cluster analysis
    • doi:10.1109/TNS.2002.998752
    • Wong, K., Feng, D., Meikle, S., & Fulham, M. (2002). Segmentation of dynamic pet images using cluster analysis. IEEE Transactions on Nuclear Science, 49(1), 200-207. doi:10.1109/TNS.2002.998752
    • (2002) IEEE Transactions on Nuclear Science , vol.49 , Issue.1
    • Wong, K.1    Feng, D.2    Meikle, S.3    Fulham, M.4
  • 57
    • 1842587592 scopus 로고    scopus 로고
    • Cluster analysis of gene expression data based on self-splitting and merging competitive learning
    • doi:10.1109/TITB.2004.824724
    • Wu, S., Liew, A., Yan, H., & Yang, M. (2004). Cluster analysis of gene expression data based on self-splitting and merging competitive learning. IEEE Transactions on Information Technology in Biomedicine, 8(1), 5-15. doi:10.1109/TITB.2004.824724
    • (2004) IEEE Transactions on Information Technology in Biomedicine , vol.8 , Issue.1
    • Wu, S.1    Liew, A.2    Yan, H.3    Yang, M.4
  • 59
    • 33845981111 scopus 로고    scopus 로고
    • Clicks: An efficient algorithm for mining subspace clusters in categorical data sets
    • doi:10.1016/j.datak.2006.01.005
    • Zaki, M. J., Peters, M., Assent, I., & Seidl, T. (2007). Clicks: An efficient algorithm for mining subspace clusters in categorical data sets. Data & Knowledge Engineering, 60(1), 51-70. doi:10.1016/j.datak.2006.01.005
    • (2007) Data & Knowledge Engineering , vol.60 , Issue.1 , pp. 51-70
    • Zaki, M.J.1    Peters, M.2    Assent, I.3    Seidl, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.