-
1
-
-
22844441843
-
Rough support vector clustering
-
Asharaf, S., Shevade, S. K., & Murty, N. M. (2005). Rough support vector clustering. Pattern Recognition Letters, 38, 1779-1783.
-
(2005)
Pattern Recognition Letters
, vol.38
, pp. 1779-1783
-
-
Asharaf, S.1
Shevade, S.K.2
Murty, N.M.3
-
2
-
-
84898514710
-
-
In the Classification Society of North America, Meeting presentation, Huston, TX
-
Chaturvedi, A., Green, P., & Carroll, J. (1994). Kmeans, k-medians and k-modes: Special cases of partitioning multiway data. In the Classification Society of North America, Meeting presentation, Huston, TX.
-
(1994)
Kmeans, K-medians and K-modes: Special Cases of Partitioning Multiway Data
-
-
Chaturvedi, A.1
Green, P.2
Carroll, J.3
-
3
-
-
0035534111
-
K-modes clustering
-
Chaturvedi, A., Green, P., & Carroll, J. (2001). K-modes clustering. Journal of Classification, 18, 35-55.
-
(2001)
Journal of Classification
, vol.18
, pp. 35-55
-
-
Chaturvedi, A.1
Green, P.2
Carroll, J.3
-
4
-
-
67649969214
-
"Best k": Critical clustering structures in categorical datasets
-
doi:10.1007/s10115-008-0159-x
-
Chen, K., & Liu, L. (2009). "Best K": Critical clustering structures in categorical datasets. Knowledge and Information Systems, 20, 1-33. doi:10.1007/s10115-008-0159-x
-
(2009)
Knowledge and Information Systems
, vol.20
, pp. 1-33
-
-
Chen, K.1
Liu, L.2
-
5
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series A (General), 39(1), 1-38.
-
(1977)
Journal of the Royal Statistical Society. Series a (General)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
6
-
-
0002161595
-
Cactus - Clustering categorical data using summaries
-
In
-
Ganti, V., Gehrke, J., & Ramakrishnan, R. (1999). CACTUS - Clustering categorical data using summaries. In Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 73-83).
-
(1999)
Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 73-83
-
-
Ganti, V.1
Gehrke, J.2
Ramakrishnan, R.3
-
7
-
-
0034133769
-
Clustering categorical data: An approach based on dynamical systems
-
doi:10.1007/s007780050005
-
Gibson, D., Kleinberg, J., & Raghavan, P. (2000). Clustering categorical data: An approach based on dynamical systems. The Very Large Data Bases Journal, 8(3-4), 222-236d. doi:10.1007/s007780050005
-
(2000)
The Very Large Data Bases Journal
, vol.8
, Issue.4
, pp. 222-236
-
-
Gibson, D.1
Kleinberg, J.2
Raghavan, P.3
-
8
-
-
0034228041
-
Rock: A robust clustering algorithm for categorical attributes
-
doi:10.1016/S0306-4379(00)00022-3
-
Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: A robust clustering algorithm for categorical attributes. Information Systems, 25(5), 345-366. doi:10.1016/S0306-4379(00)00022-3
-
(2000)
Information Systems
, vol.25
, Issue.5
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
9
-
-
0024735126
-
Classification of radar signatures by autoregressive model fitting and cluster analysis
-
doi:10.1109/TGRS.1989.35943
-
Haimov, S., Michalev, M., Savchenko, A., & Yordanov, O. (1989). Classification of radar signatures by autoregressive model fitting and cluster analysis. IEEE Transactions on Geoscience and Remote Sensing, 8(1), 606-610. doi:10.1109/TGRS.1989.35943
-
(1989)
IEEE Transactions on Geoscience and Remote Sensing
, vol.8
, Issue.1
-
-
Haimov, S.1
Michalev, M.2
Savchenko, A.3
Yordanov, O.4
-
10
-
-
0035676057
-
On clustering validation techniques
-
doi:10.1023/A:1012801612483
-
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2-3), 107-145. doi:10.1023/A:1012801612483
-
(2001)
Journal of Intelligent Information Systems
, vol.17
, Issue.3
, pp. 107-145
-
-
Halkidi, M.1
Batistakis, Y.2
Vazirgiannis, M.3
-
11
-
-
0002923271
-
Clustering based on association rule hyper graph
-
In
-
Han, E., Karypis, G., Kumar, V., & Mobasher, B. (1997). Clustering based on association rule hyper graph. In Workshop on Research Issues on Data Mining and Knowledge Discovery, (pp. 9-13).
-
(1997)
Workshop on Research Issues on Data Mining and Knowledge Discovery
, pp. 9-13
-
-
Han, E.1
Karypis, G.2
Kumar, V.3
Mobasher, B.4
-
12
-
-
0001138328
-
Algorithm as136: A k-means clustering algorithm
-
doi:10.2307/2346830
-
Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS136: A k-means clustering algorithm. Applied Statistics, 28, 100-108. doi:10.2307/2346830
-
(1979)
Applied Statistics
, vol.28
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
13
-
-
0036740348
-
Squeezer: An efficient algorithm for clustering categorical data
-
doi:10.1007/BF02948829
-
He, Z., Xu, X., & Deng, S. (2002). Squeezer: An efficient algorithm for clustering categorical data. Journal of Computer Science & Technology, 17(5), 611-624. doi:10.1007/BF02948829
-
(2002)
Journal of Computer Science & Technology
, vol.17
, Issue.5
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
14
-
-
80052305635
-
A link clustering based approach for clustering categorical data
-
Retrieved from
-
He, Z., Xu, X., & Deng, S. (2004). A link clustering based approach for clustering categorical data. Proceedings of the WAIM Conference. Retrieved from http://xxx.sf.nchc.org.tw/ftp/cs/papers/0412/0412019.pdf
-
(2004)
Proceedings of the WAIM Conference
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
15
-
-
84870540176
-
Rough set approach for categorical data clustering
-
Herawan, T., Ghazali, R., Yanto, I. T. R., & Deris, M. M. (2010). Rough set approach for categorical data clustering. International Journal of Database Theory and Application, 3(1), 33-51.
-
(2010)
International Journal of Database Theory and Application
, vol.3
, Issue.1
-
-
Herawan, T.1
Ghazali, R.2
Yanto, I.T.R.3
Deris, M.M.4
-
16
-
-
0033906937
-
Rough clustering and its application to medicine
-
Hirano, S., & Tsumoto, S. (2000). Rough clustering and its application to medicine. Information Sciences, 124, 125-137.
-
(2000)
Information Sciences
, vol.124
, pp. 125-137
-
-
Hirano, S.1
Tsumoto, S.2
-
17
-
-
27144536001
-
Extensions to the k-means algorithm for clustering large data sets with categorical values
-
doi:10.1023/A:1009769707641
-
Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3), 283-304. doi:10.1023/A:1009769707641
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.3
, pp. 283-304
-
-
Huang, Z.1
-
18
-
-
13844276694
-
Cluster analysis for gene expression data: A survey
-
doi:10.1109/TKDE.2004.68
-
Jiang, D., Tang, C., & Zhang, A. (2004). Cluster analysis for gene expression data: A survey. IEEE Transactions on Knowledge and Data Engineering, 16(11), 1370-1386. doi:10.1109/TKDE.2004.68
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.16
, Issue.11
-
-
Jiang, D.1
Tang, C.2
Zhang, A.3
-
21
-
-
23844536246
-
Fuzzy clustering of categorical data using fuzzy centroid
-
doi:10.1016/j.patrec.2004.04.004
-
Kim, D., Lee, K., & Lee, D. (2004). Fuzzy clustering of categorical data using fuzzy centroid. Pattern Recognition Letters, 25(11), 1263-1271. doi:10.1016/j.patrec.2004.04.004
-
(2004)
Pattern Recognition Letters
, vol.25
, Issue.11
-
-
Kim, D.1
Lee, K.2
Lee, D.3
-
23
-
-
0029245943
-
Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation
-
doi:10.1109/91.366564
-
Krishnapuram, R., Frigui, H., & Nasraoui, O. (1995). Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Transactions on Fuzzy Systems, 3(1), 29-60. doi:10.1109/91.366564
-
(1995)
IEEE Transactions on Fuzzy Systems
, vol.3
, Issue.1
-
-
Krishnapuram, R.1
Frigui, H.2
Nasraoui, O.3
-
24
-
-
0027595430
-
A possibilistic approach to clustering
-
doi:10.1109/91.227387
-
Krishnapuram, R., & Keller, J. (1993). A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1(2), 98-110. doi:10.1109/91.227387
-
(1993)
IEEE Transactions on Fuzzy Systems
, vol.1
, Issue.2
-
-
Krishnapuram, R.1
Keller, J.2
-
25
-
-
0035416470
-
Unsupervised rough set classification using gas
-
doi:10.1023/A:1011219918340
-
Lingras, P. (2001). Unsupervised rough set classification using GAs. Journal of Intelligent Information Systems, 16(3), 215-228. doi:10.1023/A:1011219918340
-
(2001)
Journal of Intelligent Information Systems
, vol.16
, Issue.3
, pp. 215-228
-
-
Lingras, P.1
-
26
-
-
38149094907
-
Applications of rough set based k-means
-
Kohonen SOM, GA clustering. In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Heidelberg, Germany: Springer. doi:10.1007/978-3-540-71663-1_8
-
Lingras, P. (2007). Applications of rough set based k-means. Kohonen SOM, GA clustering. In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Transactions on Rough Sets VII, LNCS (Vol. 4400, pp. 120-139). Heidelberg, Germany: Springer. doi:10.1007/978-3-540-71663-1_8
-
(2007)
Transactions on Rough Sets VII, LNCS
, vol.4400
, pp. 120-139
-
-
Lingras, P.1
-
27
-
-
57049184601
-
Precision of rough set clustering
-
In Chan, C. C. (Eds.)
-
Lingras, P., Chen, M., & Miao, D. (2008). Precision of rough set clustering. In Chan, C. C. (Eds.), RSCTC 2008, LNAI 5306 (pp. 369-378).
-
(2008)
RSCTC 2008, LNAI 5306
, pp. 369-378
-
-
Lingras, P.1
Chen, M.2
Miao, D.3
-
28
-
-
11144312947
-
Interval set clustering of web users using modified kohonen self-organizing maps based on the properties of rough sets
-
Lingras, P., Hogo, M., & Snorek, M. (2004). Interval set clustering of web users using modified Kohonen self-organizing maps based on the properties of rough sets. Web Intelligence and Agent Systems, 2(3), 217-225.
-
(2004)
Web Intelligence and Agent Systems
, vol.2
, Issue.3
-
-
Lingras, P.1
Hogo, M.2
Snorek, M.3
-
29
-
-
18144396167
-
Temporal analysis of clusters of super-market customers: Conventional versus interval set approach
-
doi:10.1016/j.ins.2004.12.007
-
Lingras, P., Hogo, M., Snorek, M., & West, C. (2005). Temporal analysis of clusters of super-market customers: Conventional versus interval set approach. Information Science, 172, 215-240. doi:10.1016/j.ins.2004.12.007
-
(2005)
Information Science
, vol.172
, pp. 215-240
-
-
Lingras, P.1
Hogo, M.2
Snorek, M.3
West, C.4
-
30
-
-
84864757317
-
Rough clustering
-
[John Wiley and Sons, Inc.], doi:10.1002/widm.16
-
Lingras, P., & Peters, G. (2011). Rough clustering. [John Wiley and Sons, Inc.]. WIREs Data Mining Knowledge Discovery, 1, 64-72. doi:10.1002/widm.16
-
(2011)
WIREs Data Mining Knowledge Discovery
, vol.1
, pp. 64-72
-
-
Lingras, P.1
Peters, G.2
-
31
-
-
3042789571
-
Interval set clustering of web users with rough k-means
-
doi:10.1023/B:JIIS.0000029668.88665.1a
-
Lingras, P., & West, C. (2004). Interval set clustering of web users with rough K-means. Journal of Intelligent Information Systems, 23(1), 5-16. doi:10.1023/B:JIIS.0000029668.88665.1a
-
(2004)
Journal of Intelligent Information Systems
, vol.23
, Issue.1
, pp. 5-16
-
-
Lingras, P.1
West, C.2
-
32
-
-
13944258291
-
Rough set based clustering: Evolutionary, neural, and statistical approaches
-
Lingras, P., Yan, P. R., & Hogo, M. (2003). Rough set based clustering: Evolutionary, neural, and statistical approaches. Proceedings of the First Indian International Conference on Artificial Intelligence, (pp. 1074-1087).
-
(2003)
Proceedings of the First Indian International Conference on Artificial Intelligence
, pp. 1074-1087
-
-
Lingras, P.1
Yan, P.R.2
Hogo, M.3
-
33
-
-
8344234993
-
Comparison of conventional and rough k-means clustering
-
In Wang, G., Lin, Q., Yao, Y., & Skowron, A. (Eds.), Vol, Heidelberg, Germany: Springer. doi:10.1007/3-540-39205-X_17
-
Lingras, P., Yan, R., & West, C. (2003). Comparison of conventional and rough k-means clustering. In Wang, G., Lin, Q., Yao, Y., & Skowron, A. (Eds.), RSFDGrC 2003, LNCS (LNAI) (Vol. 2639, pp. 130-137). Heidelberg, Germany: Springer. doi:10.1007/3-540-39205-X_17
-
(2003)
RSFDGrC 2003, LNCS (LNAI)
, vol.2639
, pp. 130-137
-
-
Lingras, P.1
Yan, R.2
West, C.3
-
34
-
-
0020102027
-
Least square quantization in pcm
-
doi:10.1109/TIT.1982.1056489
-
Lloyd, S. P. (1982). Least square quantization in PCM. IEEE Transactions on Information Theory, 28, 128-137. doi:10.1109/TIT.1982.1056489
-
(1982)
IEEE Transactions on Information Theory
, vol.28
, pp. 128-137
-
-
Lloyd, S.P.1
-
36
-
-
0027641106
-
A methodology for large scale r&d planning based on cluster analysis
-
doi:10.1109/17.233190
-
Mathieu, R., & Gibson, J. (2004). A methodology for large scale R&D planning based on cluster analysis. IEEE Transactions on Engineering Management, 40(3), 283-292. doi:10.1109/17.233190
-
(2004)
IEEE Transactions on Engineering Management
, vol.40
, Issue.3
-
-
Mathieu, R.1
Gibson, J.2
-
38
-
-
4544352979
-
An evolutionary rough partitive clustering
-
doi:10.1016/j.patrec.2004.05.007
-
Mitra, S. (2004). An evolutionary rough partitive clustering. Pattern Recognition Letters, 25, 1439-1449. doi:10.1016/j.patrec.2004.05.007
-
(2004)
Pattern Recognition Letters
, vol.25
, pp. 1439-1449
-
-
Mitra, S.1
-
39
-
-
33746795353
-
Rough-fuzzy collaborative clustering
-
Mitra, S., Bank, H., & Pedrycz, W. (2008). Rough-fuzzy collaborative clustering. IEEE Transactions on Systems, Man, and Cybernetics, 36(4), 787-795.
-
(2008)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.36
, Issue.4
, pp. 787-795
-
-
Mitra, S.1
Bank, H.2
Pedrycz, W.3
-
40
-
-
79851496548
-
Rough document clustering and the internet
-
In Pedrycz, W., Skowron, A., & Kreinovich, V. (Eds.), Wiley
-
Nguyen, H. S. (2007). Rough document clustering and the internet. In Pedrycz, W., Skowron, A., & Kreinovich, V. (Eds.), Handbook of granular computing. Wiley.
-
(2007)
Handbook of Granular Computing
-
-
Nguyen, H.S.1
-
41
-
-
34548666399
-
Mmr: An algorithm for clustering categorical data using rough set theory
-
doi:10.1016/j.datak.2007.05.005
-
Parmar, D., Wu, T., & Blackhurst, J. (2007). MMR: An algorithm for clustering categorical data using Rough Set Theory. Data & Knowledge Engineering, 63, 879-893. doi:10.1016/j.datak.2007.05.005
-
(2007)
Data & Knowledge Engineering
, vol.63
, pp. 879-893
-
-
Parmar, D.1
Wu, T.2
Blackhurst, J.3
-
44
-
-
33646419553
-
Some refinements of rough kmeans
-
doi:10.1016/j.patcog.2006.02.002
-
Peters, G. (2006). Some refinements of rough kmeans. Pattern Recognition, 39(8), 1481-1491. doi:10.1016/j.patcog.2006.02.002
-
(2006)
Pattern Recognition
, vol.39
, Issue.8
-
-
Peters, G.1
-
46
-
-
50949130691
-
Evolutionary rough k-medoids clustering
-
In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Vol, Heidelberg, Germany: Springer
-
Peters, G., Lampart, M., & Weber, R. (2007). Evolutionary rough k-medoids clustering. In Peters, J., Skowron, A., Marek, V., Orlowska, E., Slowinski, R., & Ziarko, W. (Eds.), Transactions on Rough Sets VII, LNCS (Vol. 4400, pp. 289-306). Heidelberg, Germany: Springer.
-
(2007)
Transactions on Rough Sets VII, LNCS
, vol.4400
, pp. 289-306
-
-
Peters, G.1
Lampart, M.2
Weber, R.3
-
47
-
-
50949130691
-
Evolutionary rough k-medoids clustering
-
Peters, G., Lampart, M., & Weber, R. (2008). Evolutionary rough k-medoids clustering. Transactions on Rough Sets, VIII, 289-306.
-
(2008)
Transactions on Rough Sets
, vol.8
, pp. 289-306
-
-
Peters, G.1
Lampart, M.2
Weber, R.3
-
48
-
-
57049089360
-
A dynamic approach to rough clustering
-
In Chan, C. C. (Eds.)
-
Peters, G., & Weber, R. (2008). A dynamic approach to rough clustering. In Chan, C. C. (Eds.), RSCTC 2008, LNAI 5306 (pp. 379-388).
-
(2008)
RSCTC 2008, LNAI 5306
, pp. 379-388
-
-
Peters, G.1
Weber, R.2
-
49
-
-
0029415780
-
A conceptual version of the k-means algorithm
-
doi:10.1016/0167-8655(95)00075-R
-
Ralambondrainy, H. (1995). A conceptual version of the K-means algorithm. Pattern Recognition Letters, 16(11), 1147-1157. doi:10.1016/0167-8655(95)00075-R
-
(1995)
Pattern Recognition Letters
, vol.16
, Issue.11
-
-
Ralambondrainy, H.1
-
50
-
-
0014534297
-
A new approach to clustering
-
doi:10.1016/S0019-9958(69)90591-9
-
Ruspini, E. (1969). A new approach to clustering. Information and Control, 15(1), 22-32. doi:10.1016/S0019-9958(69)90591-9
-
(1969)
Information and Control
, vol.15
, Issue.1
-
-
Ruspini, E.1
-
52
-
-
84898531112
-
Ssdr: An algorithm for clustering categorical data using rough set theory
-
Tripathy, B. K., & Ghosh, A. (2011b). SSDR: An algorithm for clustering categorical data using rough set theory. Journal of Advances in Applied Science Research, 2(3), 314-326.
-
(2011)
Journal of Advances in Applied Science Research
, vol.2
, Issue.3
-
-
Tripathy, B.K.1
Ghosh, A.2
-
54
-
-
35048868300
-
Generating compact rough cluster descriptions using an evolutionary algorithm
-
In Deb, K. (Ed.), Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-540-24855-2_152
-
Voges, K., & Pope, N. (2004). Generating compact rough cluster descriptions using an evolutionary algorithm. In Deb, K. (Ed.), GECCO2004: Genetic and Evolutionary Algorithm Conference - LNCS (pp. 1332-1333). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-540-24855-2_152
-
(2004)
GECCO2004: Genetic and Evolutionary Algorithm Conference - LNCS
, pp. 1332-1333
-
-
Voges, K.1
Pope, N.2
-
55
-
-
34447341411
-
Cluster analysis of marketing data examining on-line shopping orientation: A comparison of k-means and rough clustering approaches
-
In Abbass, H. A., Sarkar, R. A., & Newton, C. S. (Eds.), Hershey, PA: Idea Group Publishing
-
Voges, K., Pope, N., & Brown, M. (2002). Cluster analysis of marketing data examining on-line shopping orientation: A comparison of K-means and rough clustering approaches. In Abbass, H. A., Sarkar, R. A., & Newton, C. S. (Eds.), Heuristics and Optimization for Knowledge Discovery (pp. 207-224). Hershey, PA: Idea Group Publishing.
-
(2002)
Heuristics and Optimization for Knowledge Discovery
, pp. 207-224
-
-
Voges, K.1
Pope, N.2
Brown, M.3
-
56
-
-
0036464416
-
Segmentation of dynamic pet images using cluster analysis
-
doi:10.1109/TNS.2002.998752
-
Wong, K., Feng, D., Meikle, S., & Fulham, M. (2002). Segmentation of dynamic pet images using cluster analysis. IEEE Transactions on Nuclear Science, 49(1), 200-207. doi:10.1109/TNS.2002.998752
-
(2002)
IEEE Transactions on Nuclear Science
, vol.49
, Issue.1
-
-
Wong, K.1
Feng, D.2
Meikle, S.3
Fulham, M.4
-
57
-
-
1842587592
-
Cluster analysis of gene expression data based on self-splitting and merging competitive learning
-
doi:10.1109/TITB.2004.824724
-
Wu, S., Liew, A., Yan, H., & Yang, M. (2004). Cluster analysis of gene expression data based on self-splitting and merging competitive learning. IEEE Transactions on Information Technology in Biomedicine, 8(1), 5-15. doi:10.1109/TITB.2004.824724
-
(2004)
IEEE Transactions on Information Technology in Biomedicine
, vol.8
, Issue.1
-
-
Wu, S.1
Liew, A.2
Yan, H.3
Yang, M.4
-
59
-
-
33845981111
-
Clicks: An efficient algorithm for mining subspace clusters in categorical data sets
-
doi:10.1016/j.datak.2006.01.005
-
Zaki, M. J., Peters, M., Assent, I., & Seidl, T. (2007). Clicks: An efficient algorithm for mining subspace clusters in categorical data sets. Data & Knowledge Engineering, 60(1), 51-70. doi:10.1016/j.datak.2006.01.005
-
(2007)
Data & Knowledge Engineering
, vol.60
, Issue.1
, pp. 51-70
-
-
Zaki, M.J.1
Peters, M.2
Assent, I.3
Seidl, T.4
-
60
-
-
0033885139
-
Clustering categorical data
-
In
-
Zhang, Y., Fu, A., Cai, C., & Heng, P. (2000). Clustering categorical data. In Proceedings of the 16th International Conference on Data Engineering, (pp. 305-324).
-
(2000)
Proceedings of the 16th International Conference on Data Engineering
, pp. 305-324
-
-
Zhang, Y.1
Fu, A.2
Cai, C.3
Heng, P.4
|