메뉴 건너뛰기




Volumn 63, Issue 3, 2007, Pages 879-893

MMR: An algorithm for clustering categorical data using Rough Set Theory

Author keywords

Categorical data; Cluster analysis; Data mining; Rough Set Theory

Indexed keywords

CLUSTERING ALGORITHMS; ROUGH SET THEORY; SYSTEM STABILITY; UNCERTAINTY ANALYSIS;

EID: 34548666399     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2007.05.005     Document Type: Article
Times cited : (159)

References (42)
  • 1
    • 34548671697 scopus 로고    scopus 로고
    • P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik, Clustering categorical data based on information loss minimization, in: Second Hellenic Data Management Symposium, 2003, pp. 334-344.
  • 4
    • 34548700927 scopus 로고    scopus 로고
    • V., Ganti, J. Gehrke, R. Ramakrishnan, CACTUS - clustering categorical data using summaries, in: Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 73-83.
  • 5
    • 0034133769 scopus 로고    scopus 로고
    • Clustering categorical data: an approach based on dynamical systems
    • Gibson D., Kleinberg J., and Raghavan P. Clustering categorical data: an approach based on dynamical systems. The Very Large Data Bases Journal 8 3-4 (2000) 222-236
    • (2000) The Very Large Data Bases Journal , vol.8 , Issue.3-4 , pp. 222-236
    • Gibson, D.1    Kleinberg, J.2    Raghavan, P.3
  • 6
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: a robust clustering algorithm for categorical attributes
    • Guha S., Rastogi R., and Shim K. ROCK: a robust clustering algorithm for categorical attributes. Information Systems 25 5 (2000) 345-366
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 34548682856 scopus 로고    scopus 로고
    • E. Han, G. Karypis, V. Kumar, B. Mobasher, Clustering based on association rule hypergraphs, in: Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997, pp. 9-13.
  • 10
    • 34548681506 scopus 로고    scopus 로고
    • Z. He, X. Xu, S. Deng, A link clustering based approach for clustering categorical data, Proceedings of the WAIM Conference, 2004. .
  • 11
    • 0036740348 scopus 로고    scopus 로고
    • Squeezer: an efficient algorithm for clustering categorical data
    • He Z., Xu X., and Deng S. Squeezer: an efficient algorithm for clustering categorical data. Journal of Computer Science & Technology 17 5 (2002) 611-624
    • (2002) Journal of Computer Science & Technology , vol.17 , Issue.5 , pp. 611-624
    • He, Z.1    Xu, X.2    Deng, S.3
  • 12
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2 3 (1998) 283-304
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 15
    • 34548666055 scopus 로고    scopus 로고
    • A. Joshi, R. Krishnapuram, Robust fuzzy clustering methods to support web mining, in: Proceedings of the Workshop on Data Mining and Knowledge Discovery, vol. 15, 1998, pp. 1-8.
  • 16
    • 23844536246 scopus 로고    scopus 로고
    • Fuzzy clustering of categorical data using fuzzy centroids
    • Kim D., Lee K., and Lee D. Fuzzy clustering of categorical data using fuzzy centroids. Pattern Recognition Letters 25 11 (2004) 1263-1271
    • (2004) Pattern Recognition Letters , vol.25 , Issue.11 , pp. 1263-1271
    • Kim, D.1    Lee, K.2    Lee, D.3
  • 17
    • 0029246295 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation
    • Krishnapuram R., Frigui H., and Nasraoui O. Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Transactions on Fuzzy Systems 3 1 (1995) 29-60
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.1 , pp. 29-60
    • Krishnapuram, R.1    Frigui, H.2    Nasraoui, O.3
  • 20
    • 0034960598 scopus 로고    scopus 로고
    • Rough set theory: a data mining tool for semiconductor manufacturing
    • Kusiak A. Rough set theory: a data mining tool for semiconductor manufacturing. IEEE Transactions on Electronics Packaging Manufacturing 24 1 (2001) 44-50
    • (2001) IEEE Transactions on Electronics Packaging Manufacturing , vol.24 , Issue.1 , pp. 44-50
    • Kusiak, A.1
  • 21
    • 0037201112 scopus 로고    scopus 로고
    • An application of rough set theory to defect detection of automotive glass
    • Lee S., and Vachtsevanos G. An application of rough set theory to defect detection of automotive glass. Mathematics and Computers in Simulation 60 3-5 (2002) 225-231
    • (2002) Mathematics and Computers in Simulation , vol.60 , Issue.3-5 , pp. 225-231
    • Lee, S.1    Vachtsevanos, G.2
  • 22
    • 0035416470 scopus 로고    scopus 로고
    • Unsupervised rough set classification using GAs
    • Lingras P. Unsupervised rough set classification using GAs. Journal of Intelligent Information Systems 16 3 (2001) 215-228
    • (2001) Journal of Intelligent Information Systems , vol.16 , Issue.3 , pp. 215-228
    • Lingras, P.1
  • 23
    • 11144312947 scopus 로고    scopus 로고
    • Interval set clustering of web users using modified kohonen self-organizing maps based on the properties of rough sets
    • Lingras P., Hogo M., and Snorek M. Interval set clustering of web users using modified kohonen self-organizing maps based on the properties of rough sets. Web Intelligence and Agent Systems 2 3 (2004) 217-225
    • (2004) Web Intelligence and Agent Systems , vol.2 , Issue.3 , pp. 217-225
    • Lingras, P.1    Hogo, M.2    Snorek, M.3
  • 24
  • 26
    • 0027641106 scopus 로고    scopus 로고
    • A Methodology for large scale R&D planning based on cluster analysis
    • Mathieu R., and Gibson J. A Methodology for large scale R&D planning based on cluster analysis. IEEE Transactions on Engineering Management 40 3 (2004) 283-292
    • (2004) IEEE Transactions on Engineering Management , vol.40 , Issue.3 , pp. 283-292
    • Mathieu, R.1    Gibson, J.2
  • 27
    • 34548664211 scopus 로고    scopus 로고
    • L. Mazlack, A. He, Y. Zhu, S. Coppock, A rough set approach in choosing partitioning attributes, in: Proceedings of the ISCA 13th International Conference (CAINE-2000), 2000, pp. 1-6.
  • 31
    • 0031145399 scopus 로고    scopus 로고
    • Rough set approach to knowledge-based decision support
    • Pawlak Z. Rough set approach to knowledge-based decision support. European Journal of Operational Research 99 1 (1997) 48-57
    • (1997) European Journal of Operational Research , vol.99 , Issue.1 , pp. 48-57
    • Pawlak, Z.1
  • 33
    • 0029415780 scopus 로고
    • A conceptual version of the K-means algorithm
    • Ralambondrainy H. A conceptual version of the K-means algorithm. Pattern Recognition Letters 16 11 (1995) 1147-1157
    • (1995) Pattern Recognition Letters , vol.16 , Issue.11 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 34
    • 0014534297 scopus 로고
    • A new approach to clustering
    • Ruspini E. A new approach to clustering. Information Control 15 1 (1969) 22-32
    • (1969) Information Control , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.1
  • 35
    • 15744365241 scopus 로고    scopus 로고
    • Quality control problem in printed circuit manufacturing - an extended rough set approach
    • Tseng T.-L., Jothishankar M.C., and Wu T. Quality control problem in printed circuit manufacturing - an extended rough set approach. Journal of Manufacturing Systems 23 1 (2004) 56-72
    • (2004) Journal of Manufacturing Systems , vol.23 , Issue.1 , pp. 56-72
    • Tseng, T.-L.1    Jothishankar, M.C.2    Wu, T.3
  • 36
    • 80053315445 scopus 로고    scopus 로고
    • S. Tsumoto, Extraction of experts' decision process from clinical databases using rough set model, in: Proceedings of the First European Symposium, 1997, pp. 58-67.
  • 37
    • 34447341411 scopus 로고    scopus 로고
    • Cluster analysis of marketing data examining on-line shopping orientation: a comparison of K-means and rough clustering approaches
    • A Abbass H., A Sarker R., and Newton C.S. (Eds), Idea Group Publishing, Hershey, PA
    • Voges K., Pope N., and Brown M. Cluster analysis of marketing data examining on-line shopping orientation: a comparison of K-means and rough clustering approaches. In: A Abbass H., A Sarker R., and Newton C.S. (Eds). Heuristics and Optimization for Knowledge Discovery (2002), Idea Group Publishing, Hershey, PA 207-224
    • (2002) Heuristics and Optimization for Knowledge Discovery , pp. 207-224
    • Voges, K.1    Pope, N.2    Brown, M.3
  • 38
    • 35048868300 scopus 로고    scopus 로고
    • Generating compact rough cluster descriptions using an evolutionary algorithm
    • Deb K. (Ed), Springer-Verlag, Berlin
    • Voges K., and Pope N. Generating compact rough cluster descriptions using an evolutionary algorithm. In: Deb K. (Ed). GECCO2004: Genetic and Evolutionary Algorithm Conference - LNCS (2004), Springer-Verlag, Berlin 1332-1333
    • (2004) GECCO2004: Genetic and Evolutionary Algorithm Conference - LNCS , pp. 1332-1333
    • Voges, K.1    Pope, N.2
  • 40
    • 1842587592 scopus 로고    scopus 로고
    • Cluster analysis of gene expression data based on self-splitting and merging competitive learning
    • Wu S., Liew A., Yan H., and Yang M. Cluster analysis of gene expression data based on self-splitting and merging competitive learning. IEEE Transactions on Information Technology in BioMedicine 8 1 (2004) 5-15
    • (2004) IEEE Transactions on Information Technology in BioMedicine , vol.8 , Issue.1 , pp. 5-15
    • Wu, S.1    Liew, A.2    Yan, H.3    Yang, M.4
  • 41
    • 0033885139 scopus 로고    scopus 로고
    • Y. Zhang, A. Fu, C. Cai, P. Heng, Clustering categorical data, in: Proceedings of the 16th International Conference on Data Engineering, 2000, pp. 305-324.
  • 42
    • 34548698033 scopus 로고    scopus 로고
    • W. Ziarko, Rough sets for intelligent image processing, in: Proceedings of the International Workshop on Rough Sets and Knowledge Discovery, 1993, pp. 399-410.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.