-
1
-
-
84898964031
-
A variational Bayesian framework for graphical models
-
H. Attias. A variational Bayesian framework for graphical models. Advances in neural information processing systems, 12(1-2):209-215, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, Issue.1-2
, pp. 209-215
-
-
Attias, H.1
-
3
-
-
84898401898
-
The inverse Gaussian distribution: Theory, methodology, and applications
-
R.S. Chhikara and L. Folks. The inverse Gaussian distribution: theory, methodology, and applications. CRC, 1989.
-
(1989)
CRC
-
-
Chhikara, R.S.1
Folks, L.2
-
4
-
-
57349122015
-
Learning from labeled features using generalized expectation criteria
-
ACM
-
G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expectation criteria. In SIGIR, pages 595-602. ACM, 2008.
-
(2008)
SIGIR
, pp. 595-602
-
-
Druck, G.1
Mann, G.2
McCallum, A.3
-
5
-
-
84898429964
-
-
ffmpeg
-
ffmpeg. ffmpeg. http://www.ffmpeg.org.
-
-
-
-
6
-
-
1542559558
-
Graphical models and variational methods
-
Manfred Opper and David Saad, editors MIT Press
-
Zoubin Ghahramani and Matthew Beal. Graphical models and variational methods. In Manfred Opper and David Saad, editors, Advanced mean field methods: theory and practice. MIT Press, 2001.
-
(2001)
Advanced Mean Field Methods: Theory and Practice.
-
-
Ghahramani, Z.1
Beal, M.2
-
7
-
-
29344448013
-
Semi-supervised learning by entropy minimization
-
Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. NIPS, 17:529-536, 2004.
-
(2004)
NIPS
, vol.17
, pp. 529-536
-
-
Grandvalet, Y.1
Bengio, Y.2
-
9
-
-
51849117118
-
Labeled faces in the wild: A database for studying face recognition in unconstrained environments
-
URL
-
G B Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. UMass, Amherst, TR 07,49:1, 2007. URL http://vis-www.cs.umass.edu/ papers/eccv2008-lfw.pdf.
-
(2007)
UMass, Amherst, TR 07
, vol.49
, pp. 1
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
10
-
-
50649108337
-
Unsupervised joint alignment of complex images
-
Rio de Janeiro, Brazil
-
Gary B. Huang, Vidit Jain, and Erik Learned-Miller. Unsupervised joint alignment of complex images. In Proc. of ICCV, pages 153-160, Rio de Janeiro, Brazil, 2007.
-
(2007)
Proc. of ICCV
, pp. 153-160
-
-
Huang, G.B.1
Jain, V.2
Learned-Miller, E.3
-
11
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
Citeseer
-
T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209. Citeseer, 1999.
-
(1999)
ICML
, pp. 200-209
-
-
Joachims, T.1
-
12
-
-
78650848811
-
Learning to classify text using support vector machines: Methods, theory, and algorithms
-
T. Joachims. Learning to classify text using support vector machines: Methods, theory, and algorithms. Computational Linguistics, 29(4):656-664, 2002.
-
(2002)
Computational Linguistics
, vol.29
, Issue.4
, pp. 656-664
-
-
Joachims, T.1
-
13
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to variational methods for graphical models. Machine learning, 37(2): 183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
14
-
-
21244437589
-
Sparse multinomial logistic regression: Fast algorithms and generalization bounds
-
IEEE Transactions on June ISSN 0162-8828. doi:10.1109/TPAMI.2005.127
-
B. Krishnapuram, L. Carin, M.A.T. Figueiredo, and A.J. Hartemink. Sparse multinomial logistic regression: fast algorithms and generalization bounds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(6):957-968, June 2005. ISSN 0162-8828. doi:10.1109/TPAMI.2005.127.
-
(2005)
Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 957-968
-
-
Krishnapuram, B.1
Carin, L.2
Figueiredo, M.A.T.3
Hartemink, A.J.4
-
15
-
-
78049527893
-
Semi-supervised learning via Gaussian processes
-
N.D. Lawrence and M.I. Jordan. Semi-supervised learning via Gaussian processes. NIPS, 17:753-760, 2005.
-
(2005)
NIPS
, vol.17
, pp. 753-760
-
-
Lawrence, N.D.1
Jordan, M.I.2
-
16
-
-
34547978786
-
Simple, robust, scalable semi-supervised learning via expectation regularization
-
ACM
-
GS. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In ICML, page 600. ACM, 2007.
-
(2007)
ICML
, pp. 600
-
-
Mann, G.S.1
McCallum, A.2
-
17
-
-
84898431172
-
Generalized expectation criteria
-
A. McCallum, G Mann, and G Druck. Generalized expectation criteria. UMass, Amherst, TR, 2007.
-
(2007)
UMass, Amherst, TR
-
-
McCallum, A.1
Mann, G.2
Druck, G.3
-
19
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
ISSN 0162-8828
-
T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE PAMI, pages 971-987, 2002. ISSN 0162-8828.
-
(2002)
IEEE PAMI
, pp. 971-987
-
-
Ojala, T.1
Pietikäinen, M.2
Mäenpää, T.3
-
22
-
-
0035680116
-
Rapid object detection using a boosted cascade of simple features
-
P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proc. of CVPR, pages 511-518, 2001.
-
(2001)
Proc. of CVPR
, pp. 511-518
-
-
Viola, P.1
Jones, M.2
-
25
-
-
77953190446
-
The one-shot similarity kernel
-
September URL
-
L. Wolf, T. Hassner, and Y Taigman. The One-Shot similarity kernel. In Proc. of ICCV, September 2009. URL http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=5459323.
-
(2009)
Proc. of ICCV
-
-
Wolf, L.1
Hassner, T.2
Taigman, Y.3
-
26
-
-
12244303260
-
Incorporating prior knowledge with weighted margin support vector machines
-
ACM
-
X. Wu and R. Srihari. Incorporating prior knowledge with weighted margin support vector machines. In KDD, page 333. ACM, 2004.
-
(2004)
KDD
, pp. 333
-
-
Wu, X.1
Srihari, R.2
-
27
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
page 912
-
X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, Volume 20, page 912, 2003.
-
(2003)
ICML
, vol.20
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|