메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Semi supervised learning in wild faces and videos

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SUPERVISED LEARNING;

EID: 84898467212     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/C253     Document Type: Conference Paper
Times cited : (7)

References (27)
  • 1
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • H. Attias. A variational Bayesian framework for graphical models. Advances in neural information processing systems, 12(1-2):209-215, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , Issue.1-2 , pp. 209-215
    • Attias, H.1
  • 3
    • 84898401898 scopus 로고
    • The inverse Gaussian distribution: Theory, methodology, and applications
    • R.S. Chhikara and L. Folks. The inverse Gaussian distribution: theory, methodology, and applications. CRC, 1989.
    • (1989) CRC
    • Chhikara, R.S.1    Folks, L.2
  • 4
    • 57349122015 scopus 로고    scopus 로고
    • Learning from labeled features using generalized expectation criteria
    • ACM
    • G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expectation criteria. In SIGIR, pages 595-602. ACM, 2008.
    • (2008) SIGIR , pp. 595-602
    • Druck, G.1    Mann, G.2    McCallum, A.3
  • 5
    • 84898429964 scopus 로고    scopus 로고
    • ffmpeg
    • ffmpeg. ffmpeg. http://www.ffmpeg.org.
  • 6
    • 1542559558 scopus 로고    scopus 로고
    • Graphical models and variational methods
    • Manfred Opper and David Saad, editors MIT Press
    • Zoubin Ghahramani and Matthew Beal. Graphical models and variational methods. In Manfred Opper and David Saad, editors, Advanced mean field methods: theory and practice. MIT Press, 2001.
    • (2001) Advanced Mean Field Methods: Theory and Practice.
    • Ghahramani, Z.1    Beal, M.2
  • 7
    • 29344448013 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. NIPS, 17:529-536, 2004.
    • (2004) NIPS , vol.17 , pp. 529-536
    • Grandvalet, Y.1    Bengio, Y.2
  • 9
    • 51849117118 scopus 로고    scopus 로고
    • Labeled faces in the wild: A database for studying face recognition in unconstrained environments
    • URL
    • G B Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. UMass, Amherst, TR 07,49:1, 2007. URL http://vis-www.cs.umass.edu/ papers/eccv2008-lfw.pdf.
    • (2007) UMass, Amherst, TR 07 , vol.49 , pp. 1
    • Huang, G.B.1    Ramesh, M.2    Berg, T.3    Learned-Miller, E.4
  • 10
    • 50649108337 scopus 로고    scopus 로고
    • Unsupervised joint alignment of complex images
    • Rio de Janeiro, Brazil
    • Gary B. Huang, Vidit Jain, and Erik Learned-Miller. Unsupervised joint alignment of complex images. In Proc. of ICCV, pages 153-160, Rio de Janeiro, Brazil, 2007.
    • (2007) Proc. of ICCV , pp. 153-160
    • Huang, G.B.1    Jain, V.2    Learned-Miller, E.3
  • 11
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Citeseer
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209. Citeseer, 1999.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 12
    • 78650848811 scopus 로고    scopus 로고
    • Learning to classify text using support vector machines: Methods, theory, and algorithms
    • T. Joachims. Learning to classify text using support vector machines: Methods, theory, and algorithms. Computational Linguistics, 29(4):656-664, 2002.
    • (2002) Computational Linguistics , vol.29 , Issue.4 , pp. 656-664
    • Joachims, T.1
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to variational methods for graphical models. Machine learning, 37(2): 183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 14
    • 21244437589 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression: Fast algorithms and generalization bounds
    • IEEE Transactions on June ISSN 0162-8828. doi:10.1109/TPAMI.2005.127
    • B. Krishnapuram, L. Carin, M.A.T. Figueiredo, and A.J. Hartemink. Sparse multinomial logistic regression: fast algorithms and generalization bounds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(6):957-968, June 2005. ISSN 0162-8828. doi:10.1109/TPAMI.2005.127.
    • (2005) Pattern Analysis and Machine Intelligence , vol.27 , Issue.6 , pp. 957-968
    • Krishnapuram, B.1    Carin, L.2    Figueiredo, M.A.T.3    Hartemink, A.J.4
  • 15
    • 78049527893 scopus 로고    scopus 로고
    • Semi-supervised learning via Gaussian processes
    • N.D. Lawrence and M.I. Jordan. Semi-supervised learning via Gaussian processes. NIPS, 17:753-760, 2005.
    • (2005) NIPS , vol.17 , pp. 753-760
    • Lawrence, N.D.1    Jordan, M.I.2
  • 16
    • 34547978786 scopus 로고    scopus 로고
    • Simple, robust, scalable semi-supervised learning via expectation regularization
    • ACM
    • GS. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In ICML, page 600. ACM, 2007.
    • (2007) ICML , pp. 600
    • Mann, G.S.1    McCallum, A.2
  • 19
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • ISSN 0162-8828
    • T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE PAMI, pages 971-987, 2002. ISSN 0162-8828.
    • (2002) IEEE PAMI , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 22
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proc. of CVPR, pages 511-518, 2001.
    • (2001) Proc. of CVPR , pp. 511-518
    • Viola, P.1    Jones, M.2
  • 25
    • 77953190446 scopus 로고    scopus 로고
    • The one-shot similarity kernel
    • September URL
    • L. Wolf, T. Hassner, and Y Taigman. The One-Shot similarity kernel. In Proc. of ICCV, September 2009. URL http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=5459323.
    • (2009) Proc. of ICCV
    • Wolf, L.1    Hassner, T.2    Taigman, Y.3
  • 26
    • 12244303260 scopus 로고    scopus 로고
    • Incorporating prior knowledge with weighted margin support vector machines
    • ACM
    • X. Wu and R. Srihari. Incorporating prior knowledge with weighted margin support vector machines. In KDD, page 333. ACM, 2004.
    • (2004) KDD , pp. 333
    • Wu, X.1    Srihari, R.2
  • 27
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • page 912
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, Volume 20, page 912, 2003.
    • (2003) ICML , vol.20
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.