메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 593-600

Simple, robust, scalable semi-supervised learning via expectation regularization

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; MATHEMATICAL MODELS; PROBLEM SOLVING; REGRESSION ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 34547978786     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273571     Document Type: Conference Paper
Times cited : (110)

References (33)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R,. K., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6.
    • (2005) JMLR , vol.6
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion
    • O. Chapelle, B. Schlkopf and A. Zien Eds, MIT Press
    • Bengio, Y., Dellalleau, O., & Roux, N. L. (2006). Label propagation and quadratic criterion. In O. Chapelle, B. Schlkopf and A. Zien (Eds.), Semi-supervised learning. MIT Press.
    • (2006) Semi-supervised learning
    • Bengio, Y.1    Dellalleau, O.2    Roux, N.L.3
  • 3
    • 82655164053 scopus 로고    scopus 로고
    • Semi-supervised learning with conditional harmonic mixing
    • O. Chapelle, B. Schlkopf and A. Zien Eds, MIT Press
    • Burges, C., & Platt, J. (2006). Semi-supervised learning with conditional harmonic mixing. In O. Chapelle, B. Schlkopf and A. Zien (Eds.), Semi-supervised learning. MIT Press.
    • (2006) Semi-supervised learning
    • Burges, C.1    Platt, J.2
  • 4
    • 58049171791 scopus 로고    scopus 로고
    • Analysis of Benchmarks
    • O. Chapelle, A. Zien and B. Scholkopf Eds, MIT Press
    • Chapelle, O., Scholkopf, B., & Zien, A. (2006). Analysis of Benchmarks. In O. Chapelle, A. Zien and B. Scholkopf (Eds.), Semi-supervised learning. MIT Press.
    • (2006) Semi-supervised learning
    • Chapelle, O.1    Scholkopf, B.2    Zien, A.3
  • 5
    • 14344256768 scopus 로고    scopus 로고
    • On information regularization
    • Corduneanu, A., & Jaakkola, T. (2003). On information regularization. UAI.
    • (2003) UAI
    • Corduneanu, A.1    Jaakkola, T.2
  • 6
    • 34547975610 scopus 로고    scopus 로고
    • Risks of Semi-Supervised Learning
    • O. Chapelle, A. Zien and B. Scholkopf Eds, MIT Press
    • Cozman, F., & Cohen, I. (2006). Risks of Semi-Supervised Learning. In O. Chapelle, A. Zien and B. Scholkopf (Eds.), Semi-supervised learning. MIT Press.
    • (2006) Semi-supervised learning
    • Cozman, F.1    Cohen, I.2
  • 7
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. J. Royal Stat. Soc., 39, 1-38.
    • (1977) J. Royal Stat. Soc , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 9
    • 29344448013 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Grandvalet, Y., & Bengio, Y. (2004). Semi-supervised learning by entropy minimization. NIPS.
    • (2004) NIPS
    • Grandvalet, Y.1    Bengio, Y.2
  • 10
    • 84860537772 scopus 로고    scopus 로고
    • Semi-supervised conditional random fields for improved sequence segmentation and labeling
    • Jiao, F., Wang, S., Lee, C.-H., Greiner, R., & Schuurmans, D. (2006). Semi-supervised conditional random fields for improved sequence segmentation and labeling. COLING/ACL.
    • (2006) COLING/ACL
    • Jiao, F.1    Wang, S.2    Lee, C.-H.3    Greiner, R.4    Schuurmans, D.5
  • 11
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Joachims, T. (1999). Transductive inference for text classification using support vector machines. ICML.
    • (1999) ICML
    • Joachims, T.1
  • 12
    • 34547991476 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • Klein, D., & Manning, C. (2004). Corpus-based induction of syntactic structure: Models of dependency and constituency. ACL.
    • (2004) ACL
    • Klein, D.1    Manning, C.2
  • 13
    • 34547997050 scopus 로고    scopus 로고
    • Using transduction and multi-view learning to answer emails
    • Kockelkorn, M., Luneburg, A., & Scheffer, T. (2003). Using transduction and multi-view learning to answer emails. PKDD.
    • (2003) PKDD
    • Kockelkorn, M.1    Luneburg, A.2    Scheffer, T.3
  • 14
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of ICML.
    • (2001) Proceedings of ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 16
    • 34547991287 scopus 로고    scopus 로고
    • Semi-supervised sequence modeling with syntactic topic models
    • Li, W., & McCallum, A. (2005). Semi-supervised sequence modeling with syntactic topic models. AAAI.
    • (2005) AAAI
    • Li, W.1    McCallum, A.2
  • 17
    • 34547995351 scopus 로고    scopus 로고
    • Classification in networked data
    • CeDER-04-08, New York University
    • Macskassy, S., & Provost, F. (2006). Classification in networked data (Technical Report CeDER-04-08). New York University.
    • (2006) Technical Report
    • Macskassy, S.1    Provost, F.2
  • 18
    • 1042264823 scopus 로고    scopus 로고
    • A comparison of algorithms for maximum enotrpy parameter estimation
    • Malouf, R. (2002). A comparison of algorithms for maximum enotrpy parameter estimation. COLING.
    • (2002) COLING
    • Malouf, R.1
  • 19
    • 84867119745 scopus 로고
    • Tagging english text with a probabilistic model
    • Merialdo, P. (1994). Tagging english text with a probabilistic model. Computational Linguistics.
    • (1994) Computational Linguistics
    • Merialdo, P.1
  • 20
    • 85117730830 scopus 로고    scopus 로고
    • Name tagging with word clusters and discriminative training
    • Miller, S., Guinness, J., & Zamanian, A. (2004). Name tagging with word clusters and discriminative training. ACL.
    • (2004) ACL
    • Miller, S.1    Guinness, J.2    Zamanian, A.3
  • 21
    • 33750027607 scopus 로고    scopus 로고
    • Semi-supervised Text Classification Using EM
    • O. Chapelle, A. Zien and B. Scholkopf Eds, MIT Press
    • Nigam, K., McCallum, A., & Mitchell, T. (2006). Semi-supervised Text Classification Using EM. In O. Chapelle, A. Zien and B. Scholkopf (Eds.), Semisupervised learninq. MIT Press.
    • (2006) Semisupervised learninq
    • Nigam, K.1    McCallum, A.2    Mitchell, T.3
  • 22
    • 0006009575 scopus 로고    scopus 로고
    • Learning to classify text from labeled and unlabeled documents
    • Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (1998). Learning to classify text from labeled and unlabeled documents. AAAI.
    • (1998) AAAI
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 23
    • 84859913704 scopus 로고    scopus 로고
    • Word sense disambiguation using label propagation based semisupervised learning
    • Niu, Z.-Y., Ji, D.-H., & Tam, C. L. (2005). Word sense disambiguation using label propagation based semisupervised learning. ACL.
    • (2005) ACL
    • Niu, Z.-Y.1    Ji, D.-H.2    Tam, C.L.3
  • 25
    • 34547982608 scopus 로고    scopus 로고
    • A new metric-based approach to model selection
    • Schuurmans, D. (1997). A new metric-based approach to model selection. AAAI.
    • (1997) AAAI
    • Schuurmans, D.1
  • 26
    • 33750373672 scopus 로고    scopus 로고
    • Large Scale Semisupervised Linear SVMs
    • Sindhwani, V., & Keerthi, S. S. (2006). Large Scale Semisupervised Linear SVMs. SIGIR.
    • (2006) SIGIR
    • Sindhwani, V.1    Keerthi, S.S.2
  • 27
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • Smith, N., & Eisner, J. (2005). Contrastive estimation: Training log-linear models on unlabeled data. ACL.
    • (2005) ACL
    • Smith, N.1    Eisner, J.2
  • 28
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • L. Getoor and B. Taskar Eds, MIT Press
    • Sutton, C., & McCallum, A. (2006). An introduction to conditional random fields for relational learning. In L. Getoor and B. Taskar (Eds.), Introduction to statistical relational learning. MIT Press.
    • (2006) Introduction to statistical relational learning
    • Sutton, C.1    McCallum, A.2
  • 29
    • 84858874031 scopus 로고    scopus 로고
    • Partially labeled classification with markov random walks
    • Szummer, M., & Jaakkola, T. (2002). Partially labeled classification with markov random walks. NIPS.
    • (2002) NIPS
    • Szummer, M.1    Jaakkola, T.2
  • 31
    • 26444592207 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data with label propagation
    • CMU-CALD-02-107, CMU
    • Zhu, X., & Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label propagation (Technical Report CMU-CALD-02-107). CMU.
    • (2002) Technical Report
    • Zhu, X.1    Ghahramani, Z.2
  • 32
    • 1942484430 scopus 로고    scopus 로고
    • Semisupervised learning using gaussian fields and harmonic mixtures
    • Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semisupervised learning using gaussian fields and harmonic mixtures. ICML.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 33
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • Zhu, X., & Lafferty, J. (2005). Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. ICML.
    • (2005) ICML
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.