메뉴 건너뛰기




Volumn 10, Issue 5, 2014, Pages 665-671

Data mining for potential adverse drug-drug interactions

Author keywords

Adverse drug reaction; Drug drug interaction; QSAR

Indexed keywords

ABC TRANSPORTER; AMOXICILLIN; BENSERAZIDE; BETA ADRENERGIC RECEPTOR BLOCKING AGENT; CAPTOPRIL; CEPHALOSPORIN; CHOLINERGIC RECEPTOR BLOCKING AGENT; CLAVULANIC ACID; CYTOCHROME P450 1A2; CYTOCHROME P450 2C9; CYTOCHROME P450 2D6; CYTOCHROME P450 2E1; CYTOCHROME P450 3A4; CYTOCHROME P450 INHIBITOR; DOMPERIDONE; DRUG METABOLIZING ENZYME; GLUCURONOSYLTRANSFERASE; LEVODOPA; LITHIUM; LORAZEPAM; METOCLOPRAMIDE; NONSTEROID ANTIINFLAMMATORY AGENT; PAROXETINE; PENICILLIN DERIVATIVE; PROBENECID; THIAZIDE DIURETIC AGENT; XENOBIOTIC AGENT;

EID: 84898444176     PISSN: 17425255     EISSN: 17447607     Source Type: Journal    
DOI: 10.1517/17425255.2014.894507     Document Type: Review
Times cited : (19)

References (44)
  • 1
    • 4344645978 scopus 로고    scopus 로고
    • Can the pharmaceutical industry reduce attrition rates?
    • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3(8):711-15
    • (2004) Nat Rev Drug Discov , vol.3 , Issue.8 , pp. 711-715
    • Kola, I.1    Landis, J.2
  • 2
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: Towards prediction paradise?
    • van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2003;2(3):192-204
    • (2003) Nat Rev Drug Discov , vol.2 , Issue.3 , pp. 192-204
    • Van De Waterbeemd, H.1    Gifford, E.2
  • 3
    • 45249121177 scopus 로고    scopus 로고
    • Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4
    • Zhou S. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 2008;9(4):310-22
    • (2008) Curr Drug Metab , vol.9 , Issue.4 , pp. 310-322
    • Zhou, S.1
  • 4
    • 0028237729 scopus 로고
    • Interindividual variations in human liver cytochrome-P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals-studies with liver-microsomes of 30 japanese and 30 caucasians
    • Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome-P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals-studies with liver-microsomes of 30 japanese and 30 caucasians. J Pharmacol Exp Ther 1994;270(1):414-23
    • (1994) J Pharmacol Exp Ther , vol.270 , Issue.1 , pp. 414-423
    • Shimada, T.1    Yamazaki, H.2    Mimura, M.3
  • 5
    • 38949094492 scopus 로고    scopus 로고
    • Cytochrome p450 and chemical toxicology
    • Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008;21(1):70-83
    • (2008) Chem Res Toxicol , vol.21 , Issue.1 , pp. 70-83
    • Guengerich, F.P.1
  • 6
    • 33748561200 scopus 로고    scopus 로고
    • Clinically important drug-disease interactions and their prevalence in older adults
    • Lindblad CI, Hanlon JT, Gross CR, et al. Clinically important drug-disease interactions and their prevalence in older adults. Clin Ther 2006;28(8):1133-43
    • (2006) Clin Ther , vol.28 , Issue.8 , pp. 1133-1143
    • Lindblad, C.I.1    Hanlon, J.T.2    Gross, C.R.3
  • 8
    • 79959379936 scopus 로고    scopus 로고
    • Detecting drug interactions from adverse-event reports: Interaction between paroxetine and pravastatin increases blood glucose levels
    • Tatonetti NP, Denny JC, Murphy SN, et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther 2011;90(1):133-42
    • (2011) Clin Pharmacol Ther , vol.90 , Issue.1 , pp. 133-142
    • Tatonetti, N.P.1    Denny, J.C.2    Murphy, S.N.3
  • 9
    • 84964922492 scopus 로고    scopus 로고
    • Statistical mining of potential drug interaction adverse effects in FDA's spontaneous reporting system
    • Harpaz R, Haerian K, Chase HS, Friedman C. Statistical mining of potential drug interaction adverse effects in FDA's spontaneous reporting system. AMIA Annu Symp Proc 2010;2010:281-5
    • (2010) AMIA Annu Symp Proc , vol.2010 , pp. 281-285
    • Harpaz, R.1    Haerian, K.2    Chase, H.S.3    Friedman, C.4
  • 10
    • 84898405367 scopus 로고    scopus 로고
    • Health Canada Government of Canada. [Last accessed January 2014]
    • Health Canada. Adverse Reaction Database. Government of Canada. 2014. Available from: http://www.hc-sc. gc.ca/dhp-mps/medeff/databasdon/index-eng.php [Last accessed January 2014]
    • (2014) Adverse Reaction Database
  • 11
    • 84898443478 scopus 로고    scopus 로고
    • Micromedix 2.0., Truven Health Analytics [Last accessed January 2014]
    • Micromedix 2.0., Truven Health Analytics. Available from: http://www.micromedex. com/[Last accessed January 2014]
  • 12
    • 84898418092 scopus 로고    scopus 로고
    • Drug interactions. Indiana University, Division of Clinical Pharmacology [Last accessed January 2014]
    • Drug interactions. Indiana University, Division of Clinical Pharmacology. Available from: http://medicine.iupui.edu/clinpharm/ddis/[Last accessed January 2014]
  • 13
    • 77954723643 scopus 로고    scopus 로고
    • Identifying adverse drug reactions associated with drug-drug interactions: Data mining of a spontaneous reporting database in italy
    • Leone R, Magro L, Moretti U, et al. Identifying adverse drug reactions associated with drug-drug interactions: data mining of a spontaneous reporting database in italy. Drug Saf 2010;33(8):667-75
    • (2010) Drug Saf , vol.33 , Issue.8 , pp. 667-675
    • Leone, R.1    Magro, L.2    Moretti, U.3
  • 14
    • 36749001490 scopus 로고    scopus 로고
    • Extracting drug-drug interaction articles from MEDLINE to improve the content of drug databases
    • Duda S, Aliferis C, Miller R, et al. Extracting drug-drug interaction articles from MEDLINE to improve the content of drug databases. AMIA Annu Symp Proc 2005;216-20
    • (2005) AMIA Annu Symp Proc , pp. 216-220
    • Duda, S.1    Aliferis, C.2    Miller, R.3
  • 15
    • 16244403024 scopus 로고    scopus 로고
    • Text mining approaches in molecular biology and biomedicine
    • Krallinger M, Erhardt RAA, Valencia A. Text mining approaches in molecular biology and biomedicine. Drug Discov Today 2005;10(6):439-45
    • (2005) Drug Discov Today , vol.10 , Issue.6 , pp. 439-445
    • Krallinger, M.1    Raa, E.2    Valencia, A.3
  • 16
    • 79953109654 scopus 로고    scopus 로고
    • A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents
    • Segura-Bedmar I, Martinez P, de Pablo-Sanchez C. A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents. BMC Bioinformatics 2011;12(Suppl 2):S1-S11
    • (2011) BMC Bioinformatics , vol.12 , Issue.SUPPL. 2
    • Segura-Bedmar, I.1    Martinez, P.2    De Pablo-Sanchez, C.3
  • 17
    • 33646130383 scopus 로고    scopus 로고
    • A hybrid method for relation extraction from biomedical literature
    • Huang ML, Zhu XY, Li M. A hybrid method for relation extraction from biomedical literature. Int J Med Inform 2006;75(6):443-55
    • (2006) Int J Med Inform , vol.75 , Issue.6 , pp. 443-455
    • Huang, M.L.1    Zhu, X.Y.2    Li, M.3
  • 18
    • 84858300305 scopus 로고    scopus 로고
    • Discovery and explanation of drug-drug interactions via text mining
    • Percha B, Garten Y, Altman RB. Discovery and explanation of drug-drug interactions via text mining. Pac Symp Biocomput 2012;410-21
    • (2012) Pac Symp Biocomput , pp. 410-421
    • Percha, B.1    Garten, Y.2    Altman, R.B.3
  • 20
    • 84876473356 scopus 로고    scopus 로고
    • Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake efflux and interactions
    • Sedykh A, Fourches D, Duan J, et al. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res 2013;30(4):996-1007
    • (2013) Pharm Res , vol.30 , Issue.4 , pp. 996-1007
    • Sedykh, A.1    Fourches, D.2    Duan, J.3
  • 21
    • 84898431360 scopus 로고    scopus 로고
    • PharmGKB Stanford University. [Last accessed January 2014]
    • PharmGKB. The Pharmacogenomics Knowledgebase. Stanford University. 2014. Available from: http://www. pharmgkb.org/[Last accessed January 2014]
    • (2014) The Pharmacogenomics Knowledgebase
  • 22
    • 22344435687 scopus 로고    scopus 로고
    • Predicting and preventing adverse drug reactions in the very old
    • Merle L, Laroche M-L, Dantoine T, Charmes J-P. Predicting and preventing adverse drug reactions in the very old. Drugs Aging 2005;22(5):375-92
    • (2005) Drugs Aging , vol.22 , Issue.5 , pp. 375-392
    • Merle, L.1    Laroche, M.-L.2    Dantoine, T.3    Charmes, J.-P.4
  • 23
    • 0016430689 scopus 로고
    • The effects of age and liver disease on the disposition and elimination of diazepam in adult man
    • Klotz U, Avant GR, Hoyumpa A, et al. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest 1975;55(2):347-59
    • (1975) J Clin Invest , vol.55 , Issue.2 , pp. 347-359
    • Klotz, U.1    Avant, G.R.2    Hoyumpa, A.3
  • 24
    • 83555174443 scopus 로고    scopus 로고
    • Detection and prevention of drug-drug interactions in the hospitalized elderly: Utility of new cytochrome P450-based software
    • Zakrzewski-Jakubiak H, Doan J, Lamoureux P, et al. Detection and prevention of drug-drug interactions in the hospitalized elderly: utility of new cytochrome P450-based software. Am J Geriatr Pharmacother 2011;9(6):461-70
    • (2011) Am J Geriatr Pharmacother , vol.9 , Issue.6 , pp. 461-470
    • Zakrzewski-Jakubiak, H.1    Doan, J.2    Lamoureux, P.3
  • 25
    • 0041660785 scopus 로고    scopus 로고
    • Identification of adverse drug reactions in geriatric inpatients using a computerised drug database
    • Egger T, Dormann H, Ahne G, et al. Identification of adverse drug reactions in geriatric inpatients using a computerised drug database. Drug Aging 2003;20(10):769-76
    • (2003) Drug Aging , vol.20 , Issue.10 , pp. 769-776
    • Egger, T.1    Dormann, H.2    Ahne, G.3
  • 26
    • 0030027121 scopus 로고    scopus 로고
    • The accuracy of information on current drug therapy in geriatric out-patients' records
    • Hasan M, Woodhouse K. The accuracy of information on current drug therapy in geriatric out-patients' records. Arch Gerontol Geriatr 1996;22(1):21-5
    • (1996) Arch Gerontol Geriatr , vol.22 , Issue.1 , pp. 21-25
    • Hasan, M.1    Woodhouse, K.2
  • 27
    • 0020486401 scopus 로고
    • Who is taking their tablets
    • Pearson RM. Who is taking their tablets. Br Med J (Clin Res Ed) 1982;285(6344):757-8
    • (1982) Br Med J (Clin Res Ed) , vol.285 , Issue.6344 , pp. 757-758
    • Pearson, R.M.1
  • 28
    • 78349306848 scopus 로고    scopus 로고
    • Detection of drug related problems in an interdisciplinary health care model for rural areas in Germany
    • Fiss T, Ritter CA, Alte D, et al. Detection of drug related problems in an interdisciplinary health care model for rural areas in Germany. Pharm World Sci 2010;32(5):566-74
    • (2010) Pharm World Sci , vol.32 , Issue.5 , pp. 566-574
    • Fiss, T.1    Ritter, C.A.2    Alte, D.3
  • 29
    • 84886597450 scopus 로고    scopus 로고
    • Application of a drug-interaction detection method to the korean national health insurance claims database
    • Choi CA, Chang MJ, Choi HD, et al. Application of a drug-interaction detection method to the korean national health insurance claims database. Regul Toxicol Pharmacol 2013;67(2):294-8
    • (2013) Regul Toxicol Pharmacol , vol.67 , Issue.2 , pp. 294-298
    • Choi, C.A.1    Chang, M.J.2    Choi, H.D.3
  • 30
    • 48049111575 scopus 로고    scopus 로고
    • A statistical methodology for drug-drug interaction surveillance
    • Noren GN, Sundberg R, Bate A, Edwards IR. A statistical methodology for drug-drug interaction surveillance. Stat Med 2008;27(16):3057-70
    • (2008) Stat Med , vol.27 , Issue.16 , pp. 3057-3070
    • Noren, G.N.1    Sundberg, R.2    Bate, A.3    Edwards, I.R.4
  • 31
    • 72949106908 scopus 로고    scopus 로고
    • A computerized system for detecting signals due to drug-drug interactions in spontaneous reporting systems
    • Qian Y, Ye X, Du W, et al. A computerized system for detecting signals due to drug-drug interactions in spontaneous reporting systems. Br J Clin Pharmacol 2010;69(1):67-73
    • (2010) Br J Clin Pharmacol , vol.69 , Issue.1 , pp. 67-73
    • Qian, Y.1    Ye, X.2    Du, W.3
  • 32
    • 84866067701 scopus 로고    scopus 로고
    • Literature based drug interaction prediction with clinical assessment using electronic medical records: Novel myopathy associated drug interactions
    • Duke JD, Han X, Wang Z, et al. Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol 2012;8(8):e1002614
    • (2012) PLoS Comput Biol , vol.8 , Issue.8
    • Duke, J.D.1    Han, X.2    Wang, Z.3
  • 33
    • 79952120931 scopus 로고    scopus 로고
    • Automated information extraction and structure-activity relationship analysis of cytochrome P450 substrates
    • Yamashita F, Feng C, Yoshida S, et al. Automated information extraction and structure-activity relationship analysis of cytochrome P450 substrates. J Chem Inf Model 2011;51(2):378-85
    • (2011) J Chem Inf Model , vol.51 , Issue.2 , pp. 378-385
    • Yamashita, F.1    Feng, C.2    Yoshida, S.3
  • 34
    • 82355160710 scopus 로고    scopus 로고
    • Network-based analysis and characterization of adverse drug-drug interactions
    • Takarabe M, Shigemizu D, Kotera M, et al. Network-based analysis and characterization of adverse drug-drug interactions. J Chem Inf Model 2011;51(11):2977-85
    • (2011) J Chem Inf Model , vol.51 , Issue.11 , pp. 2977-2985
    • Takarabe, M.1    Shigemizu, D.2    Kotera, M.3
  • 35
    • 79952263228 scopus 로고    scopus 로고
    • Architecture of the drug-drug interaction network
    • Hu TM, Hayton WL. Architecture of the drug-drug interaction network. J Clin Pharm Ther 2011;36(2):135-43
    • (2011) J Clin Pharm Ther , vol.36 , Issue.2 , pp. 135-143
    • Hu, T.M.1    Hayton, W.L.2
  • 37
    • 0002226683 scopus 로고    scopus 로고
    • Pajek: A program for large network analysis
    • [Last accessed November 2013]
    • Batagelj V, Mrvar A. Pajek: a program for large network analysis. Connections 1998.21:47-57. Available from: http://vlado.fmf.uni-lj.si/pub/ networks/pajek/[Last accessed November 2013]
    • (1998) Connections , vol.21 , pp. 47-57
    • Batagelj, V.1    Mrvar, A.2
  • 39
    • 84898446348 scopus 로고    scopus 로고
    • JAPIC. Japan Pharmaceutical Information Center [Last accessed January 2014]
    • JAPIC. Japan Pharmaceutical Information Center. Available from: http://www.japic. or.jp/[Last accessed January 2014]
  • 40
    • 83055199515 scopus 로고    scopus 로고
    • WHO Collaborating Centre for Drug Statistics Methodology, Norwegian Institute of Public Health, Nydalen, Oslo, Norway. [Last accessed January 2014]
    • International language for drug utilization research. WHO Collaborating Centre for Drug Statistics Methodology, Norwegian Institute of Public Health, Nydalen, Oslo, Norway. 2014. Available from: http://www.whocc.no/[Last accessed January 2014]
    • (2014) International Language for Drug Utilization Research
  • 41
    • 84868334650 scopus 로고    scopus 로고
    • A single kernel-based approach to extract drug-drug interactions from biomedical literature
    • Zhang Y, Lin H, Yang Z, et al. A single kernel-based approach to extract drug-drug interactions from biomedical literature. PLoS One 2012;7(11):e48901
    • (2012) PLoS One , vol.7 , Issue.11
    • Zhang, Y.1    Lin, H.2    Yang, Z.3
  • 42
    • 84898437895 scopus 로고    scopus 로고
    • SemEval-2013 Task9, Vol. 2: Seventh Int Workshop on Sementic Evaluation (SemEval 2013)
    • 14-15 June 2013; Atlanta, Georgia
    • . SEM); 14-15 June 2013; Atlanta, Georgia; 2013. p. 241-50
    • (2013) .SEM) , pp. 241-250
    • Segura-Bedmar, I.1
  • 43
    • 84877781144 scopus 로고    scopus 로고
    • The development and evaluation of triage algorithms for early discovery of adverse drug interactions
    • Strandell J, Caster O, Hopstadius J, et al. The development and evaluation of triage algorithms for early discovery of adverse drug interactions. Drug Saf 2013;36(5):371-88
    • (2013) Drug Saf , vol.36 , Issue.5 , pp. 371-388
    • Strandell, J.1    Caster, O.2    Hopstadius, J.3
  • 44
    • 84879892778 scopus 로고    scopus 로고
    • Web-scale pharmacovigilance: Listening to signals from the crowd
    • White RW, Tatonetti NP, Shah NH, et al. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc 2013;20(3):404-8
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.3 , pp. 404-408
    • White, R.W.1    Tatonetti, N.P.2    Shah, N.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.