메뉴 건너뛰기




Volumn 136, Issue , 2014, Pages 14-29

Disease Diagnosis with a hybrid method SVR using NSGA-II

Author keywords

Disease diagnosis; Machine learning; Multi objective genetic algorithm; Support vector regression

Indexed keywords

DATA MINING; GENETIC ALGORITHMS; LEARNING SYSTEMS; MACHINE LEARNING; SUPPORT VECTOR REGRESSION;

EID: 84897964825     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.01.042     Document Type: Article
Times cited : (38)

References (63)
  • 1
    • 68249092359 scopus 로고    scopus 로고
    • An intelligent model for liver disease diagnosis
    • Lin R.H. An intelligent model for liver disease diagnosis. Artif. Intell. Med. 2009, 47:53-62.
    • (2009) Artif. Intell. Med. , vol.47 , pp. 53-62
    • Lin, R.H.1
  • 3
    • 84897961129 scopus 로고    scopus 로고
    • Predicting breast cancer survivability using data mining techniques, in: Proceedings of the Ninth Workshop on Mining Scientific and Engineering Datasets in conjunction with the Sixth SIAM International Conference on Data Mining (SDM 2006), Saturday, April 22
    • A. Bellaachia, E. Guven, Predicting breast cancer survivability using data mining techniques, in: Proceedings of the Ninth Workshop on Mining Scientific and Engineering Datasets in conjunction with the Sixth SIAM International Conference on Data Mining (SDM 2006), Saturday, April 22, 2006.
    • (2006)
    • Bellaachia, A.1    Guven, E.2
  • 4
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D., Walker G., Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 2005, 34:113-127.
    • (2005) Artif. Intell. Med. , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 5
    • 84891496401 scopus 로고    scopus 로고
    • Predict the onset of diabetes disease using Artificial Neural Network (ANN)
    • Pradhan M., Sahu R.K. Predict the onset of diabetes disease using Artificial Neural Network (ANN). Int. J. Comput. Sci. Emerg. Technol. 2011, 2(2):303-311.
    • (2011) Int. J. Comput. Sci. Emerg. Technol. , vol.2 , Issue.2 , pp. 303-311
    • Pradhan, M.1    Sahu, R.K.2
  • 6
    • 0035516047 scopus 로고    scopus 로고
    • Projection of diabetes burden through 2050
    • Boyle J.P., et al. Projection of diabetes burden through 2050. Diabetes Care 2001, 24:1936-1940.
    • (2001) Diabetes Care , vol.24 , pp. 1936-1940
    • Boyle, J.P.1
  • 7
    • 0033516384 scopus 로고    scopus 로고
    • The scientific challenge of hepatitis C
    • Cohen J. The scientific challenge of hepatitis C. Science 1999, 285:26-30.
    • (1999) Science , vol.285 , pp. 26-30
    • Cohen, J.1
  • 8
    • 0034201456 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: analyzing the state-of-the-art
    • Veldhuizen D.A.V., Lamont G.B. Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evolut. Comput. 2000, 8:125-147.
    • (2000) Evolut. Comput. , vol.8 , pp. 125-147
    • Veldhuizen, D.A.V.1    Lamont, G.B.2
  • 9
    • 35348890827 scopus 로고    scopus 로고
    • A hybrid approach to medical decision support systems: combining feature selection, fuzzy weighted pre-processing and AIRS
    • Polat K., Günes S. A hybrid approach to medical decision support systems: combining feature selection, fuzzy weighted pre-processing and AIRS. Comput. Methods Programs Biomed. 2007, 88:164-174.
    • (2007) Comput. Methods Programs Biomed. , vol.88 , pp. 164-174
    • Polat, K.1    Günes, S.2
  • 10
    • 33846442797 scopus 로고    scopus 로고
    • Medical decision support system based on artificial immune recognition immune system (AIRS), fuzzy weighted pre-processing and feature selection
    • Polat K., Gunes S. Medical decision support system based on artificial immune recognition immune system (AIRS), fuzzy weighted pre-processing and feature selection. Expert Syst. Appl. 2007, 33:484-490.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 484-490
    • Polat, K.1    Gunes, S.2
  • 11
  • 13
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 14
    • 3142761493 scopus 로고    scopus 로고
    • On the relationship between classical grid search and probabilistic roadmaps
    • LaValle S.M, Branicky M.S On the relationship between classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 2002, 23:673-692.
    • (2002) Int. J. Robot. Res. , vol.23 , pp. 673-692
    • LaValle, S.M.1    Branicky, M.S.2
  • 15
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang C.L., Wang C.J. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 2006, 31:231-240.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 16
    • 78651542954 scopus 로고    scopus 로고
    • Determination of Optimal SVM Parameters by Using GA/PSO
    • Ren Y., Bai G. Determination of Optimal SVM Parameters by Using GA/PSO. J. Comput. 2010, 5:1160-1168.
    • (2010) J. Comput. , vol.5 , pp. 1160-1168
    • Ren, Y.1    Bai, G.2
  • 17
    • 70350705845 scopus 로고    scopus 로고
    • ACO-based hybrid classification system with feature subset selection and model parameters optimization
    • Huang C.L. ACO-based hybrid classification system with feature subset selection and model parameters optimization. Neurocomputing 2009, 73:438-448.
    • (2009) Neurocomputing , vol.73 , pp. 438-448
    • Huang, C.L.1
  • 18
    • 80053151277 scopus 로고    scopus 로고
    • An adaptive chaotic PSO for parameter optimization and feature extraction of LS-SVM based modelling
    • in: American Control Conference (ACC)
    • W. Cheng, J. Ding, W. Kong, T. Chai, S.J. Qin, An adaptive chaotic PSO for parameter optimization and feature extraction of LS-SVM based modelling, in: American Control Conference (ACC), 2011, pp. 3263-3268.
    • (2011) , pp. 3263-3268
    • Cheng, W.1    Ding, J.2    Kong, W.3    Chai, T.4    Qin, S.J.5
  • 19
    • 77952542640 scopus 로고    scopus 로고
    • Parameters by using a hybrid CLPSO-BFGS algorithm
    • Li S., Tan M., Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing 2010, 73:2089-2096.
    • (2010) Neurocomputing , vol.73 , pp. 2089-2096
    • Li, S.1    Tan, M.2    Tuning, S.V.M.3
  • 20
    • 33745727034 scopus 로고    scopus 로고
    • Multi-objective optimization using genetic algorithms: a tutorial
    • Konak A., Coit D.W., Smith A.E. Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 2006, 91:992-1007.
    • (2006) Reliab. Eng. Syst. Saf. , vol.91 , pp. 992-1007
    • Konak, A.1    Coit, D.W.2    Smith, A.E.3
  • 25
    • 34248592215 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: generalized Discriminant Analysis and Least Square Support Vector Machine
    • Polat K., Günes S., Arslan A. A cascade learning system for classification of diabetes disease: generalized Discriminant Analysis and Least Square Support Vector Machine. Expert Syst. Appl. 2008, 34:482-487.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 482-487
    • Polat, K.1    Günes, S.2    Arslan, A.3
  • 26
    • 53849141501 scopus 로고    scopus 로고
    • Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems
    • Özsen S., Günes S. Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems. Expert Syst. Appl. 2009, 36:386-392.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 386-392
    • Özsen, S.1    Günes, S.2
  • 27
    • 33748147286 scopus 로고    scopus 로고
    • Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism
    • Polat K., Sahan S., Kodaz H., Günes S. Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism. Expert Syst. Appl. 2007, 32:172-183.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 172-183
    • Polat, K.1    Sahan, S.2    Kodaz, H.3    Günes, S.4
  • 28
    • 85096201807 scopus 로고    scopus 로고
    • RSVM: reduced support vector machines, in: Proceedings of the first SIAM International Conference on Data Mining, 2001 Citeseer
    • Y.J. Lee, O.L. Mangasarian, RSVM: reduced support vector machines, in: Proceedings of the first SIAM International Conference on Data Mining, 2001 Citeseer 2001, pp. 00-07.
    • (2001) , pp. 00-07
    • Lee, Y.J.1    Mangasarian, O.L.2
  • 29
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel fisher discriminant analysis
    • Gestel T.V., Suykens J.A.K., Lanckriet G., Lambrechts A., Moor B.D., Vandewalle J. Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel fisher discriminant analysis. Neural Comput. 2002, 14:1115-1147.
    • (2002) Neural Comput. , vol.14 , pp. 1115-1147
    • Gestel, T.V.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    Moor, B.D.5    Vandewalle, J.6
  • 31
    • 84897959107 scopus 로고    scopus 로고
    • Improved Use of Continuous Attributes in C4. 5
    • J.R. Quinlan, Improved Use of Continuous Attributes in C4. 5, 1996. arxiv:cs/9603103.
    • (1996)
    • Quinlan, J.R.1
  • 32
    • 84897963763 scopus 로고    scopus 로고
    • U.o.R.D.o.C.Science, RIAC:arule induction algorithm based on approximate classification, Citeseer, Technical Report CS-96-06, Department of Computer Science University of Regina, CANADA
    • H.J. Hamilton, N. Shan, N. Cercone, U.o.R.D.o.C.Science, RIAC:arule induction algorithm based on approximate classification, Citeseer, Technical Report CS-96-06, Department of Computer Science University of Regina, CANADA, 1996.
    • (1996)
    • Hamilton, H.J.1    Shan, N.2    Cercone, N.3
  • 33
    • 84897962788 scopus 로고    scopus 로고
    • Neural Networks in Medical Diagnosis: Comparison with other Methods
    • B. Ster, A. Dobnikar, Neural Networks in Medical Diagnosis: Comparison with other Methods, 1996, pp. 427-430.
    • (1996) , pp. 427-430
    • Ster, B.1    Dobnikar, A.2
  • 34
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 1999, 16:149-169.
    • (1999) Artif. Intell. Med. , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 35
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • Pena-Reyes C.A., Sipper M. A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 1999, 17:131-155.
    • (1999) Artif. Intell. Med. , vol.17 , pp. 131-155
    • Pena-Reyes, C.A.1    Sipper, M.2
  • 36
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 2000, 18:205-219.
    • (2000) Artif. Intell. Med. , vol.18 , pp. 205-219
    • Setiono, R.1
  • 37
    • 35048888141 scopus 로고    scopus 로고
    • Artificial immune system classification of multiple-class problems
    • Goodman D., Boggess L., Watkins A. Artificial immune system classification of multiple-class problems. Proc. Artif. Neural Netw. Eng. 2002, 2:179-183.
    • (2002) Proc. Artif. Neural Netw. Eng. , vol.2 , pp. 179-183
    • Goodman, D.1    Boggess, L.2    Watkins, A.3
  • 38
    • 84965009967 scopus 로고    scopus 로고
    • Two applications of the LSA machine, in: Proceedings 9th International Conference on Neural Information Processing (ICONIP'02) Singapore, 2002, IEEE
    • A.A. Albrecht, G. Lappas, S.A. Vinterbo, C. Wong, L. Ohno-Machado, Two applications of the LSA machine, vol. 181, in: Proceedings 9th International Conference on Neural Information Processing (ICONIP'02) Singapore, 2002, IEEE, 2002, pp. 184-189.
    • (2002) , vol.181 , pp. 184-189
    • Albrecht, A.A.1    Lappas, G.2    Vinterbo, S.A.3    Wong, C.4    Ohno-Machado, L.5
  • 39
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J., Szeifert F. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit. Lett. 2003, 24:2195-2207.
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 40
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • Polat K., Günes S. Breast cancer diagnosis using least square support vector machine. Digital Signal Process. 2007, 17:694-701.
    • (2007) Digital Signal Process. , vol.17 , pp. 694-701
    • Polat, K.1    Günes, S.2
  • 41
    • 0141573276 scopus 로고    scopus 로고
    • Artificial neural networks for diagnosis of hepatitis disease, , In: International joint conference on Neural Networks (IJCNN), Portland, OR, USA, July 20-24, IEEE
    • L. Ozyilmaz, T. Yildirim, Artificial neural networks for diagnosis of hepatitis disease, vol. 581, In: International joint conference on Neural Networks (IJCNN), Portland, OR, USA, July 20-24, IEEE, 2003, pp. 586-589.
    • (2003) , vol.581 , pp. 586-589
    • Ozyilmaz, L.1    Yildirim, T.2
  • 42
    • 0031623633 scopus 로고    scopus 로고
    • Minimal Distance Neural Methods, , in: World Congress of Computational Intelligence, Anchorage, Alaska, IEEE
    • W. Dich, K. Grudzinski, G.H.F. Diercksen, Minimal Distance Neural Methods, vol. 1292, in: World Congress of Computational Intelligence, Anchorage, Alaska, IEEE 1998, pp. 1299-1304.
    • (1998) , vol.1292 , pp. 1299-1304
    • Dich, W.1    Grudzinski, K.2    Diercksen, G.H.F.3
  • 43
    • 0033331411 scopus 로고    scopus 로고
    • in: Proceeding of the International Joint Conference on Neural Networks, 1999. IJCNN '99. Vol. 1, Washington, DC, IEEE
    • W. Duch, R. Adamczak, K. Grabczewski, in: Proceeding of the International Joint Conference on Neural Networks, 1999. IJCNN '99. Vol. 1, Washington, DC, IEEE, 1999, pp. 669-674.
    • (1999) , pp. 669-674
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 44
    • 33751175417 scopus 로고    scopus 로고
    • Hepatitis disease diagnosis using a new hybrid system based on feature selection (FS) and artificial immune recognition system with fuzzy resource allocation
    • Polat K., Gunes S. Hepatitis disease diagnosis using a new hybrid system based on feature selection (FS) and artificial immune recognition system with fuzzy resource allocation. Digital Signal Process. 2006, 16:889-901.
    • (2006) Digital Signal Process. , vol.16 , pp. 889-901
    • Polat, K.1    Gunes, S.2
  • 45
    • 79953700261 scopus 로고    scopus 로고
    • A new intelligent hepatitis diagnosis system: PCA-LSSVM
    • Calisir D., Dogantekin E. A new intelligent hepatitis diagnosis system: PCA-LSSVM. Expert Syst. Appl. 2011, 38(8):10705-10708.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10705-10708
    • Calisir, D.1    Dogantekin, E.2
  • 46
    • 60249094445 scopus 로고    scopus 로고
    • A hybrid evolutionary algorithm for attribute selection in data mining
    • Tan K., Teoh E., Yu Q., Goh K. A hybrid evolutionary algorithm for attribute selection in data mining. Expert Syst. Appl. 2009, 36:8616-8630.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 8616-8630
    • Tan, K.1    Teoh, E.2    Yu, Q.3    Goh, K.4
  • 47
    • 67349267265 scopus 로고    scopus 로고
    • Automatic hepatitis diagnosis system based on linear discriminant analysis and adaptive network based on fuzzy inference system
    • Dogantekin E., Dogantekin A., Avci D. Automatic hepatitis diagnosis system based on linear discriminant analysis and adaptive network based on fuzzy inference system. Expert Syst. Appl. 2009, 36:11282-11286.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11282-11286
    • Dogantekin, E.1    Dogantekin, A.2    Avci, D.3
  • 49
    • 44949105491 scopus 로고    scopus 로고
    • Design of a hybrid system for the diabetes and heart diseases
    • Kahramanli H., Allahverdi N. Design of a hybrid system for the diabetes and heart diseases. Expert Syst. Appl. 2008, 35:82-89.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 82-89
    • Kahramanli, H.1    Allahverdi, N.2
  • 50
    • 80052035439 scopus 로고    scopus 로고
    • A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis
    • Ganji M.F., Abadeh M.S. A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis. Expert Syst. Appl. 2011, 38(12):14650-14659.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.12 , pp. 14650-14659
    • Ganji, M.F.1    Abadeh, M.S.2
  • 51
    • 77955334293 scopus 로고    scopus 로고
    • An intelligent diagnosis system for diabetes on linear discriminant analysis and adaptive network based fuzzy inference system: Lda-anfis
    • Dogantekin E., Dogantekin A., Avci D., Avci L. An intelligent diagnosis system for diabetes on linear discriminant analysis and adaptive network based fuzzy inference system: Lda-anfis. Digital Signal Process. 2010, 20:1248-1255.
    • (2010) Digital Signal Process. , vol.20 , pp. 1248-1255
    • Dogantekin, E.1    Dogantekin, A.2    Avci, D.3    Avci, L.4
  • 52
    • 16344365619 scopus 로고    scopus 로고
    • Classification using partial least squares with penalized logistic regression
    • Gersende F., Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression. Bioinformatics 2005, 21(7):1104-1111.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1104-1111
    • Gersende, F.1    Lambert-Lacroix, S.2
  • 53
    • 84897957405 scopus 로고    scopus 로고
    • Pareto archived simulated annealing for single machine job shop scheduling with multiple objectives, in: Proceedings of the Sixth International Multi-Conference on Computing in the Global Information Technology
    • S. Hanoun, S. Nahavandi, H. Kull, Pareto archived simulated annealing for single machine job shop scheduling with multiple objectives, in: Proceedings of the Sixth International Multi-Conference on Computing in the Global Information Technology, 2011.
    • (2011)
    • Hanoun, S.1    Nahavandi, S.2    Kull, H.3
  • 55
    • 0000852513 scopus 로고
    • Multi-objective optimization using non-dominated sorting in genetic algorithms
    • Srinivas N., Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evolut. Comput. 1994, 2(3):221-248.
    • (1994) Evolut. Comput. , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 58
    • 33646521128 scopus 로고    scopus 로고
    • A tutorial on evolutionary multiobjective optimization
    • Lecture notes in Economics and Mathematical Systems, Springer
    • Zitzler E., Laumanns M., Bleuler S. A tutorial on evolutionary multiobjective optimization. Metaheuristics for Multiobjective Optimisation 2004, Lecture notes in Economics and Mathematical Systems, Springer.
    • (2004) Metaheuristics for Multiobjective Optimisation
    • Zitzler, E.1    Laumanns, M.2    Bleuler, S.3
  • 59
    • 34547293339 scopus 로고    scopus 로고
    • doi:10.1109/CEC.2006.1688539, A. Nazemi, X. Yao, A. Chan, Extracting a set of robust pareto-optimal parameters for hydrologic models using NSGA-II and SCEM, in: 2006 IEEE Congress on Evolutionary Computation
    • A. Nazemi, X. Yao, A. Chan, Extracting a set of robust pareto-optimal parameters for hydrologic models using NSGA-II and SCEM, in: 2006 IEEE Congress on Evolutionary Computation, 2006, pp. 1901-1908. doi:10.1109/CEC.2006.1688539.
    • (2006) , pp. 1901-1908
    • Nazemi, A.1    Yao, X.2    Chan, A.3
  • 60
    • 84865024603 scopus 로고    scopus 로고
    • Pareto-optimality and a search for robustness: choosing solutions with desired properties in objective space and parameter space
    • Dumedah G., Berg AA., Wineberg M. Pareto-optimality and a search for robustness: choosing solutions with desired properties in objective space and parameter space. J. Hydroinform. 2011, 14(2):270-285. 10.2166/hydro.2011.120.
    • (2011) J. Hydroinform. , vol.14 , Issue.2 , pp. 270-285
    • Dumedah, G.1    Berg, A.A.2    Wineberg, M.3
  • 61
    • 84857224438 scopus 로고    scopus 로고
    • Evaluating auto-selection methods used for choosing solutions from pareto-optimal set: does non-dominance persist from calibration to validation phase?
    • Dumedah G., Berg AA., Wineberg M. Evaluating auto-selection methods used for choosing solutions from pareto-optimal set: does non-dominance persist from calibration to validation phase?. J. Hydrol Eng. 2012, 17(1):150-159. 10.1061/(ASCE)HE.1943-5584.0000389.
    • (2012) J. Hydrol Eng. , vol.17 , Issue.1 , pp. 150-159
    • Dumedah, G.1    Berg, A.A.2    Wineberg, M.3
  • 62
    • 78349306633 scopus 로고    scopus 로고
    • Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II
    • Dumedah G., Berg A., Wineberg M., Collier R. Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II. J. Water Resour. Manage. 2010, 24(15):4469-4489. 10.1007/s11269-010-9668-y.
    • (2010) J. Water Resour. Manage. , vol.24 , Issue.15 , pp. 4469-4489
    • Dumedah, G.1    Berg, A.2    Wineberg, M.3    Collier, R.4
  • 63
    • 34447102221 scopus 로고    scopus 로고
    • Multi-objective automatic calibration of SWAT using NSGA-II
    • Bekele EG., Nicklow JW. Multi-objective automatic calibration of SWAT using NSGA-II. J. Hydrol. 2007, 341:165-176.
    • (2007) J. Hydrol. , vol.341 , pp. 165-176
    • Bekele, E.G.1    Nicklow, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.