메뉴 건너뛰기




Volumn 92, Issue , 2014, Pages 298-311

Bayesian multi-task learning for decoding multi-subject neuroimaging data

Author keywords

Decoding; Functional magnetic resonance imaging; Gaussian process; Machine learning; Mixed effects; Multi output learning; Multi task learning; Pattern recognition; Repeated measures; Transfer learning

Indexed keywords

ACCURACY; ANALYTICAL PARAMETERS; ARTICLE; BAYESIAN LEARNING; BRAIN MAPPING; DATA PROCESSING; DECODING; FUNCTIONAL MAGNETIC RESONANCE IMAGING; KERNEL METHOD; MACHINE LEARNING; MULTI TASK LEARNING; NEUROIMAGING; PATTERN RECOGNITION; PREDICTIVE VALUE; PRIORITY JOURNAL; REPRODUCIBILITY; ADOLESCENT; ADULT; ALGORITHM; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; BAYES THEOREM; COMPUTER ASSISTED DIAGNOSIS; EPISODIC MEMORY; FEMALE; HUMAN; MALE; PHYSIOLOGY; PROCEDURES; SENSITIVITY AND SPECIFICITY; VISUAL CORTEX; YOUNG ADULT;

EID: 84897801062     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.02.008     Document Type: Article
Times cited : (48)

References (61)
  • 1
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: operator estimation with spectral regularization
    • Abernethy J., Bach F., Evgeniou T., Vert J.P. A new approach to collaborative filtering: operator estimation with spectral regularization. J. Mach. Learn. Res. 2009, 10:803-826.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.P.4
  • 2
    • 0032213559 scopus 로고    scopus 로고
    • The variability of human, bold hemodynamic responses
    • Aguirre G.K., Zarahn E., D'Esposito M. The variability of human, bold hemodynamic responses. NeuroImage 1998, 8:360-369.
    • (1998) NeuroImage , vol.8 , pp. 360-369
    • Aguirre, G.K.1    Zarahn, E.2    D'Esposito, M.3
  • 3
    • 84858759793 scopus 로고    scopus 로고
    • Sparse convolved Gaussian processes for multi-output regression
    • Curran Associates, Inc. D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.)
    • Alvarez M.A., Lawrence N.D. Sparse convolved Gaussian processes for multi-output regression. NIPS 2008, 57-64. Curran Associates, Inc. D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.).
    • (2008) NIPS , pp. 57-64
    • Alvarez, M.A.1    Lawrence, N.D.2
  • 5
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker B., Heskes T. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. Res. 2003, 4:2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 2003
    • Bakker, B.1    Heskes, T.2
  • 7
    • 85161977902 scopus 로고    scopus 로고
    • Multi-task Gaussian process prediction
    • MIT Press, Cambridge, MA, J.C. Platt, D. Koller, Y. Singer, S. Roweis (Eds.)
    • Bonilla E.V., Chai K.M., Williams C.K.I. Multi-task Gaussian process prediction. Advances in Neural Information Processing Systems 2008, 20:153-160. MIT Press, Cambridge, MA. J.C. Platt, D. Koller, Y. Singer, S. Roweis (Eds.).
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 153-160
    • Bonilla, E.V.1    Chai, K.M.2    Williams, C.K.I.3
  • 10
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana R. Multitask learning. Mach. Learn. 1997, 28:41-75.
    • (1997) Mach. Learn. , vol.28 , pp. 41-75
    • Caruana, R.1
  • 14
    • 84878855409 scopus 로고    scopus 로고
    • Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities
    • Filippone M., Marquand A., Blain C., Williams S., Mourao-Miranda J., Girolami M. Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. Ann. Appl. Stat. 2012, 6:1883-1905.
    • (2012) Ann. Appl. Stat. , vol.6 , pp. 1883-1905
    • Filippone, M.1    Marquand, A.2    Blain, C.3    Williams, S.4    Mourao-Miranda, J.5    Girolami, M.6
  • 15
    • 0029029430 scopus 로고
    • Characterizing dynamic brain responses with fMRI: a multivariate approach
    • Friston K.J., Frith C.D., Frackowiak R.S., Turner R. Characterizing dynamic brain responses with fMRI: a multivariate approach. NeuroImage 1995, 2:166-172.
    • (1995) NeuroImage , vol.2 , pp. 166-172
    • Friston, K.J.1    Frith, C.D.2    Frackowiak, R.S.3    Turner, R.4
  • 17
    • 83055194435 scopus 로고    scopus 로고
    • Measuring structural and functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment
    • Frost M.A., Goebel R. Measuring structural and functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. NeuroImage 2012, 59:1369-1381. 10.1016/j.neuroimage.2011.08.035.
    • (2012) NeuroImage , vol.59 , pp. 1369-1381
    • Frost, M.A.1    Goebel, R.2
  • 19
    • 84897804755 scopus 로고    scopus 로고
    • Beyond brain reading: randomized sparsity and clustering to simultaneously predict and identify
    • Springer, G. Langs, I. Rish, M. Grosse-Wentrup, B. Murphy (Eds.)
    • Gramfort A., Varoquaux G., Thirion B. Beyond brain reading: randomized sparsity and clustering to simultaneously predict and identify. MLINI 2011, 9-16. Springer. G. Langs, I. Rish, M. Grosse-Wentrup, B. Murphy (Eds.).
    • (2011) MLINI , pp. 9-16
    • Gramfort, A.1    Varoquaux, G.2    Thirion, B.3
  • 22
    • 1842505168 scopus 로고    scopus 로고
    • Variation of bold hemodynamic responses across subjects and brain regions and their effects on statistical analyses
    • Handwerker D.A., Ollinger J.M., D'Esposito M. Variation of bold hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 2004, 21:1639-1651.
    • (2004) NeuroImage , vol.21 , pp. 1639-1651
    • Handwerker, D.A.1    Ollinger, J.M.2    D'Esposito, M.3
  • 23
    • 84948746712 scopus 로고
    • Flexible discriminant analysis by optimal scoring
    • Hastie T., Tibshirani R., Buja A. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 1993, 89:1255-1270.
    • (1993) J. Am. Stat. Assoc. , vol.89 , pp. 1255-1270
    • Hastie, T.1    Tibshirani, R.2    Buja, A.3
  • 24
  • 25
    • 21944448369 scopus 로고    scopus 로고
    • Generalisability, random effects and population inference
    • Holmes A., Friston K. Generalisability, random effects and population inference. NeuroImage 1998, 7:S754.
    • (1998) NeuroImage , vol.7
    • Holmes, A.1    Friston, K.2
  • 27
    • 80052413808 scopus 로고    scopus 로고
    • Focused multi-task learning using Gaussian processes
    • Springer, D. Gunopulos, T. Hofmann, D. Malerba, M. Vazirgiannis (Eds.)
    • Leen G., Peltonen J., Kaski S. Focused multi-task learning using Gaussian processes. ECML/PKDD (2) 2011, 310-325. Springer. D. Gunopulos, T. Hofmann, D. Malerba, M. Vazirgiannis (Eds.).
    • (2011) ECML/PKDD (2) , pp. 310-325
    • Leen, G.1    Peltonen, J.2    Kaski, S.3
  • 28
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
    • Marquand A., Howard M., Brammer M., Chu C., Coen S., Mourao-Miranda J. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage 2010, 49:2178-2189.
    • (2010) NeuroImage , vol.49 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    Brammer, M.3    Chu, C.4    Coen, S.5    Mourao-Miranda, J.6
  • 29
    • 79954589579 scopus 로고    scopus 로고
    • Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers
    • Marquand A., De Simoni S., O'Daly O., Williams S., Mourão-Miranda J., Mehta M. Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers. Neuropsychopharmacology 2011, 36:1237-1247.
    • (2011) Neuropsychopharmacology , vol.36 , pp. 1237-1247
    • Marquand, A.1    De Simoni, S.2    O'Daly, O.3    Williams, S.4    MourÃo-Miranda, J.5    Mehta, M.6
  • 30
    • 84863406628 scopus 로고    scopus 로고
    • Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: a multi-class pattern recognition approach
    • Marquand A.F., O'Daly O.G., Simoni S.D., Alsop D.C., Maguire R.P., Williams S.C., Zelaya F.O., Mehta M.A. Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: a multi-class pattern recognition approach. NeuroImage 2012, 60:1015-1024.
    • (2012) NeuroImage , vol.60 , pp. 1015-1024
    • Marquand, A.F.1    O'Daly, O.G.2    Simoni, S.D.3    Alsop, D.C.4    Maguire, R.P.5    Williams, S.C.6    Zelaya, F.O.7    Mehta, M.A.8
  • 33
    • 33646859908 scopus 로고    scopus 로고
    • Combined permutation test and mixed-effect model for group average analysis in fMRI
    • Meriaux S., Roche A., Dehaene-Lambertz G., Thirion B., Poline J.B. Combined permutation test and mixed-effect model for group average analysis in fMRI. Hum. Brain Mapp. 2006, 27:402-410.
    • (2006) Hum. Brain Mapp. , vol.27 , pp. 402-410
    • Meriaux, S.1    Roche, A.2    Dehaene-Lambertz, G.3    Thirion, B.4    Poline, J.B.5
  • 36
    • 0035722899 scopus 로고    scopus 로고
    • Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system
    • Morosan P., Rademacher J., Schleicher A., Amunts K., Schormann T., Zilles K. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 2001, 13:684-701.
    • (2001) NeuroImage , vol.13 , pp. 684-701
    • Morosan, P.1    Rademacher, J.2    Schleicher, A.3    Amunts, K.4    Schormann, T.5    Zilles, K.6
  • 37
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional mri data
    • Mourao-Miranda J., Bokde A.L., Born C., Hampel H., Stetter M. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional mri data. NeuroImage 2005, 28:980-995.
    • (2005) NeuroImage , vol.28 , pp. 980-995
    • Mourao-Miranda, J.1    Bokde, A.L.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 38
    • 79955010085 scopus 로고    scopus 로고
    • Encoding and decoding in fMRI
    • (Multivariate Decoding and Brain Reading)
    • Naselaris T., Kay K.N., Nishimoto S., Gallant J.L. Encoding and decoding in fMRI. NeuroImage 2011, 56:400-410. (Multivariate Decoding and Brain Reading).
    • (2011) NeuroImage , vol.56 , pp. 400-410
    • Naselaris, T.1    Kay, K.N.2    Nishimoto, S.3    Gallant, J.L.4
  • 39
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: a primer with examples
    • Nichols T., Holmes A. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2002, 15:1-25.
    • (2002) Hum. Brain Mapp. , vol.15 , pp. 1-25
    • Nichols, T.1    Holmes, A.2
  • 40
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • Nickisch H., Rasmussen C.E. Approximations for binary Gaussian process classification. J. Mach. Learn. Res. 2008, 9:2035-2078.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 41
    • 33748178966 scopus 로고    scopus 로고
    • Beyond mind-reading: multi-voxel pattern analysis of fMRI data
    • Norman K.A., Polyn S.M., Detre G.J., Haxby J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 2006, 10:424-430.
    • (2006) Trends Cogn. Sci. , vol.10 , pp. 424-430
    • Norman, K.A.1    Polyn, S.M.2    Detre, G.J.3    Haxby, J.V.4
  • 42
    • 34147210675 scopus 로고    scopus 로고
    • New methodological tools for multiple-reader roc studies1
    • Obuchowski N.A. New methodological tools for multiple-reader roc studies1. Radiology 2007, 243:10-12.
    • (2007) Radiology , vol.243 , pp. 10-12
    • Obuchowski, N.A.1
  • 43
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
    • Orru G., Pettersson-Yeo W., Marquand A., Sartori G., Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 2012, 36:1140-1152.
    • (2012) Neurosci. Biobehav. Rev. , vol.36 , pp. 1140-1152
    • Orru, G.1    Pettersson-Yeo, W.2    Marquand, A.3    Sartori, G.4    Mechelli, A.5
  • 45
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview
    • Pereira F., Mitchell T., Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 2009, 45:S199-S209.
    • (2009) NeuroImage , vol.45
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 47
    • 84857059478 scopus 로고    scopus 로고
    • Model sparsity and brain pattern interpretation of classification models in neuroimaging
    • Rasmussen P.M., Hansen L.K., Madsen K.H., Churchill N.W., Strother S.C. Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recogn. 2011, 45:2085-2100.
    • (2011) Pattern Recogn. , vol.45 , pp. 2085-2100
    • Rasmussen, P.M.1    Hansen, L.K.2    Madsen, K.H.3    Churchill, N.W.4    Strother, S.C.5
  • 49
    • 84855282767 scopus 로고    scopus 로고
    • Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty
    • Ryali S., Chen T., Supekar K., Menon V. Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. NeuroImage 2012, 59:3852-3861.
    • (2012) NeuroImage , vol.59 , pp. 3852-3861
    • Ryali, S.1    Chen, T.2    Supekar, K.3    Menon, V.4
  • 50
    • 78049323760 scopus 로고    scopus 로고
    • Graphical multi-task learning
    • Sheldon D. Graphical multi-task learning. Technical Report 2008.
    • (2008) Technical Report
    • Sheldon, D.1
  • 51
    • 83855165736 scopus 로고    scopus 로고
    • Bayesian multitask classification with Gaussian process priors
    • Skolidis G., Sanguinetti G. Bayesian multitask classification with Gaussian process priors. IEEE Trans. Neural Networks 2011, 22:2011-2021.
    • (2011) IEEE Trans. Neural Networks , vol.22 , pp. 2011-2021
    • Skolidis, G.1    Sanguinetti, G.2
  • 52
    • 84859465410 scopus 로고    scopus 로고
    • A case study on meta-generalising: a Gaussian processes approach
    • Skolidis G., Sanguinetti G. A case study on meta-generalising: a Gaussian processes approach. J. Mach. Learn. Res. 2012, 13:691-721.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 691-721
    • Skolidis, G.1    Sanguinetti, G.2
  • 53
    • 84895998243 scopus 로고    scopus 로고
    • Joint estimation of structured sparsity and output structure in multiple-output regression via inverse-covariance regularization
    • Sohn K.A., Kim S. Joint estimation of structured sparsity and output structure in multiple-output regression via inverse-covariance regularization. J. Mach. Learn. Res. Proc. Track 2012, 22:1081-1089.
    • (2012) J. Mach. Learn. Res. Proc. Track , vol.22 , pp. 1081-1089
    • Sohn, K.A.1    Kim, S.2
  • 54
    • 7044228130 scopus 로고    scopus 로고
    • Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis
    • Strother S., La Conte S., Hansen L.K., Anderson J., Zhang J., Pulapura S., Rottenberg D. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage 2004, 23:S196-S207.
    • (2004) NeuroImage , vol.23
    • Strother, S.1    La Conte, S.2    Hansen, L.K.3    Anderson, J.4    Zhang, J.5    Pulapura, S.6    Rottenberg, D.7
  • 55
    • 80052349633 scopus 로고    scopus 로고
    • Dissociable effects of top-down and bottom-up attention during episodic encoding
    • Uncapher M.R., Hutchinson J.B., Wagner A.D. Dissociable effects of top-down and bottom-up attention during episodic encoding. J. Neurosci. 2011, 31:12613-12628.
    • (2011) J. Neurosci. , vol.31 , pp. 12613-12628
    • Uncapher, M.R.1    Hutchinson, J.B.2    Wagner, A.D.3
  • 56
    • 84897758331 scopus 로고    scopus 로고
    • Multivariate linear regression of high-dimensional fMRI data with multiple target variables
    • (in press)
    • Valente G., Castellanos A.L., Vanacor G., Formisano E. Multivariate linear regression of high-dimensional fMRI data with multiple target variables. Hum. Brain Mapp. 2014, (in press). 10.1002/hbm.22318.
    • (2014) Hum. Brain Mapp.
    • Valente, G.1    Castellanos, A.L.2    Vanacor, G.3    Formisano, E.4
  • 57
    • 85161970602 scopus 로고    scopus 로고
    • Brain covariance selection: better individual functional connectivity models using population prior
    • Curran Associates, Inc. J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, A. Culotta (Eds.)
    • Varoquaux G., Gramfort A., Poline J.B., Thirion B. Brain covariance selection: better individual functional connectivity models using population prior. NIPS 2010, 2334-2342. Curran Associates, Inc. J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, A. Culotta (Eds.).
    • (2010) NIPS , pp. 2334-2342
    • Varoquaux, G.1    Gramfort, A.2    Poline, J.B.3    Thirion, B.4
  • 58
    • 34347333571 scopus 로고    scopus 로고
    • Support vector machine learning-based fMRI data group analysis
    • (Wang, Ze Childress, Anna R. Wang, Jiongjiong Detre, Jobn A.)
    • Wang Z., Childress A.R., Wang J.J., Detre J.A. Support vector machine learning-based fMRI data group analysis. NeuroImage 2007, 36:1139-1151. (Wang, Ze Childress, Anna R. Wang, Jiongjiong Detre, Jobn A.).
    • (2007) NeuroImage , vol.36 , pp. 1139-1151
    • Wang, Z.1    Childress, A.R.2    Wang, J.J.3    Detre, J.A.4
  • 60
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • Zhang D., Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 2012, 59:895-907.
    • (2012) NeuroImage , vol.59 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 61
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multi-task learning
    • Zhou J., Liu J., Narayan V.A., Ye J. Modeling disease progression via multi-task learning. NeuroImage 2013, 78:233-248.
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1    Liu, J.2    Narayan, V.A.3    Ye, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.