-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R.K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817-1853, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
3
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
4
-
-
49549110461
-
A comparative study of methods for transductive transfer learning
-
Omaha, Nebraska, USA
-
A. Arnold, R. Nallapati, and W.W. Cohen. A comparative study of methods for transductive transfer learning. In Proceedings of the 7th IEEE International Conference on Data Mining Workshops, pages 77-82, Omaha, Nebraska, USA, 2007.
-
(2007)
Proceedings of the 7th IEEE International Conference on Data Mining Workshops
, pp. 77-82
-
-
Arnold, A.1
Nallapati, R.2
Cohen, W.W.3
-
7
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Vancouver, Canada
-
S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain adaptation. In Advances in Neural Information Processing Systems 19, pages 137-145, Vancouver, Canada, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 137-145
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
8
-
-
80053374829
-
Impossibility theorems for domain adaptation
-
Sardinia, Italy
-
S. Ben-David, T. Luu, T. Lu, and D. Pál. Impossibility theorems for domain adaptation. In Proceedings of the 13th International Workshop on Artificial Intelligence and Statistics, volume 13, pages 129-136, Sardinia, Italy, 2010.
-
(2010)
Proceedings of the 13th International Workshop on Artificial Intelligence and Statistics
, vol.13
, pp. 129-136
-
-
Ben-David, S.1
Luu, T.2
Lu, T.3
Pál, D.4
-
10
-
-
85161977902
-
Multi-task gaussian process prediction
-
Vancouver, Canada
-
E. Bonilla, K. M. Chai, and C.K.I. Williams. Multi-task gaussian process prediction. In Advances in Neural Information Processing Systems 20, pages 153-160, Vancouver, Canada, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 153-160
-
-
Bonilla, E.1
Chai, K.M.2
Williams, C.K.I.3
-
11
-
-
78149479802
-
The binormal assumption on precision-recall curves
-
Istanbul, Turkey
-
K.H. Brodersen, C.S. Ong, K.E. Stephan, and J.M. Buhmann. The binormal assumption on precision-recall curves. In Proceedings of the 2010 International Conference on Pattern Recognition, pages 4263-4266, Istanbul, Turkey, 2010.
-
(2010)
Proceedings of the 2010 International Conference on Pattern Recognition
, pp. 4263-4266
-
-
Brodersen, K.H.1
Ong, C.S.2
Stephan, K.E.3
Buhmann, J.M.4
-
12
-
-
0031189914
-
Multi-task learning
-
R. Caruana. Multi-task learning. Machine Learning, 28(1):41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
16
-
-
0001609938
-
Efficient approaches to gaussian process classification
-
Denver, Colorado
-
L. Csató, E. Fokoué, M. Opper, B. Schottky, and O. Winther. Efficient approaches to gaussian process classification. In Advances in Neural Information Processing Systems 12, pages 251-257, Denver, Colorado, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 251-257
-
-
Csató, L.1
Fokoué, E.2
Opper, M.3
Schottky, B.4
Winther, O.5
-
21
-
-
0000861179
-
Three digit accurate multiple normal probabilities
-
I. Deak. Three digit accurate multiple normal probabilities. Numerische Mathematik, 35(4):369-380, 1980.
-
(1980)
Numerische Mathematik
, vol.35
, Issue.4
, pp. 369-380
-
-
Deak, I.1
-
22
-
-
0036926244
-
Computing multivariate normal probabilities: A new look
-
DOI 10.1198/106186002321018876
-
H. I. Gassmann, I. Deak, and T. Szantai. Computing multivariate normal probabilities: A new look. Journal of Computational and Graphical Statistics, 11(4):920-949, 2002. (Pubitemid 36047114)
-
(2002)
Journal of Computational and Graphical Statistics
, vol.11
, Issue.4
, pp. 920-949
-
-
Gassmann, H.I.1
Deak, I.2
Szantai, T.3
-
23
-
-
0001341675
-
Numerical computation of multivariate normal probabilities
-
A. Genz. Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1(2):141-149, 1992.
-
(1992)
Journal of Computational and Graphical Statistics
, vol.1
, Issue.2
, pp. 141-149
-
-
Genz, A.1
-
24
-
-
33745841370
-
Variational Bayesian multinomial probit regression with gaussian process priors
-
DOI 10.1162/neco.2006.18.8.1790
-
M. Girolami and S. Rogers. Variational bayesian multinomial probit regression with gaussian process priors. Neural Computation, 18(8):1790-1817, 2006. (Pubitemid 44036395)
-
(2006)
Neural Computation
, vol.18
, Issue.8
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
25
-
-
84864066685
-
Data integration for classification problems employing Gaussian process priors
-
Vancouver, Canada
-
M. Girolami and M. Zhong. Data integration for classification problems employing Gaussian process priors. In Advances in Neural Information Processing Systems 19, pages 465-472, Vancouver, Canada, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 465-472
-
-
Girolami, M.1
Zhong, M.2
-
26
-
-
14844283547
-
Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals
-
A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, 101(23): 215-220, 2000.
-
(2000)
Circulation
, vol.101
, Issue.23
, pp. 215-220
-
-
Goldberger, A.L.1
Amaral, L.A.N.2
Glass, L.3
Hausdorff, J.M.4
Ch. Ivanov, P.5
Mark, R.G.6
Mietus, J.E.7
Moody, G.B.8
Peng, C.-K.9
Stanley, H.E.10
-
28
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
J. A. Hanley and B. J. Mcneil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1):29-36, April 1982. (Pubitemid 12142173)
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
29
-
-
0024732792
-
Connectionist learning procedures
-
G.E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1-3):185-234, 1989.
-
(1989)
Artificial Intelligence
, vol.40
, Issue.1-3
, pp. 185-234
-
-
Hinton, G.E.1
-
30
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Vancouver, Canada
-
J. Huang, A. J. Smola, A. Gretton, K M. Borgwardt, and B. Schölkopf. Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems 19, pages 601-608, Vancouver, Canada, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 601-608
-
-
Huang, J.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
Schölkopf, B.5
-
31
-
-
0001940458
-
Adaptive mixtures of local experts
-
R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3(1):79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
32
-
-
0036472946
-
A theoretical study on six classifier fusion strategies
-
DOI 10.1109/34.982906
-
L.I. Kuncheva. A theoretical study on six classifier fusion strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2):281-286, 2002. (Pubitemid 34198215)
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.2
, pp. 281-286
-
-
Kuncheva, L.I.1
-
33
-
-
65549146496
-
Semisupervised multitask learning
-
Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin. Semisupervised multitask learning. IEEE Transactions on Pattern Analysis Machine Intelligence, 31(6):1074-1086, 2009.
-
(2009)
IEEE Transactions on Pattern Analysis Machine Intelligence
, vol.31
, Issue.6
, pp. 1074-1086
-
-
Liu, Q.1
Liao, X.2
Li, H.3
Stack, J.R.4
Carin, L.5
-
35
-
-
70049090062
-
Domain adaptation with multiple sources
-
Vancouver, Canada
-
Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation with multiple sources. In Advances in Neural Information Processing Systems 21, pages 1041-1048, Vancouver, Canada, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1041-1048
-
-
Mansour, Y.1
Mohri, M.2
Rostamizadeh, A.3
-
36
-
-
0345978970
-
Expectation propagation for approximate bayesian inference
-
San Francisco, CA, USA
-
T.P. Minka. Expectation propagation for approximate bayesian inference. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, volume 17, pages 362-369, San Francisco, CA, USA, 2001.
-
(2001)
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence
, vol.17
, pp. 362-369
-
-
Minka, T.P.1
-
37
-
-
0034320350
-
Gaussian processes for classification: Mean-field algorithms
-
M. Opper and O. Winther. Gaussian processes for classification: mean-field algorithms. Neural Computation, 12(11):2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
39
-
-
79951681949
-
Domain adaptation via transfer component analysis
-
S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199-210, 2009.
-
(2009)
IEEE Transactions on Neural Networks
, vol.22
, Issue.2
, pp. 199-210
-
-
Pan, S.J.1
Tsang, I.W.2
Kwok, J.T.3
Yang, Q.4
-
40
-
-
34547971961
-
Self-taught learning: Transfer learning from unlabeled data
-
Corvallis, OR, USA
-
R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In Proceedings of the 24th International Conference on Machine Learning, pages 759-766, Corvallis, OR, USA, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 759-766
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
43
-
-
35248812683
-
The most general methodology to create a valid correlation matrix for risk management and option pricing purposes
-
R. Rebonato and P. Jäckel. The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. Journal of Risk, 2(2), 2000.
-
(2000)
Journal of Risk
, vol.2
, Issue.2
-
-
Rebonato, R.1
Jäckel, P.2
-
44
-
-
83855165736
-
Bayesian multitask classification with gaussian process priors
-
Dec.
-
G. Skolidis and G. Sanguinetti. Bayesian multitask classification with gaussian process priors. IEEE Transactions on Neural Networks, 22(12):2011-2021, Dec. 2011.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.12
, pp. 2011-2021
-
-
Skolidis, G.1
Sanguinetti, G.2
-
45
-
-
62249215723
-
Automatic classification of arrhythmic beats using gaussian processes
-
Bologna, Italy
-
G. Skolidis, RH Clayton, and G. Sanguinetti. Automatic classification of arrhythmic beats using gaussian processes. In IEEE Transactions on Computers in Cardiology, 2008, pages 921-924, Bologna, Italy, 2008.
-
(2008)
IEEE Transactions on Computers in Cardiology, 2008
, pp. 921-924
-
-
Skolidis, G.1
Clayton, R.H.2
Sanguinetti, G.3
-
49
-
-
4544388567
-
Mixtures of gaussian processes
-
Vancouver, Canada MIT Press
-
Volker Tresp. Mixtures of gaussian processes. In Advances in Neural Information Processing Systems 13, pages 654-660, Vancouver, Canada, 2000. MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.13
, pp. 654-660
-
-
Tresp, V.1
-
51
-
-
33846487387
-
Multi-task learning for classification with Dirichlet process priors
-
Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with dirichlet process priors. The Journal of Machine Learning Research, 8:35-63, 2007. (Pubitemid 46155123)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 35-63
-
-
Ya, X.1
Xuejun, L.2
Carin, L.3
Krishnapuram, B.4
-
52
-
-
31844442664
-
Learning gaussian processes from multiple tasks
-
Bonn, Germany
-
K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from multiple tasks. In Proceedings of the 22nd International Conference on Machine Learning, pages 1012-1019, Bonn, Germany, 2005.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning
, pp. 1012-1019
-
-
Yu, K.1
Tresp, V.2
Schwaighofer, A.3
|