메뉴 건너뛰기




Volumn 11, Issue 1, 2007, Pages 75-87

Collaborative filtering on streaming data with interest-drifting

Author keywords

[No Author keywords available]

Indexed keywords


EID: 38349041037     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2007-11105     Document Type: Article
Times cited : (18)

References (40)
  • 1
    • 0031104254 scopus 로고    scopus 로고
    • Recommender systems
    • P. Resnick and H.R. Varian, Recommender systems, Commun ACM 40 (1997), 56-58.
    • (1997) Commun ACM , vol.40 , pp. 56-58
    • Resnick, P.1    Varian, H.R.2
  • 2
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B.M. Oki and D. Terry, Using collaborative filtering to weave an information tapestry, Commun ACM 35 (1992), 61-70.
    • (1992) Commun ACM , vol.35 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 3
    • 0029179043 scopus 로고    scopus 로고
    • U. Shardanand and P. Maes, Social information filtering: algorithms for automating word of mouth, In: CHI '95: Proceedings of the SIGCHI conference on Human factors in computing systems, New York, NY, USA, ACM Press/Addison-Wesley Publishing Co. (1995), 210-217.
    • U. Shardanand and P. Maes, Social information filtering: algorithms for automating "word of mouth", In: CHI '95: Proceedings of the SIGCHI conference on Human factors in computing systems, New York, NY, USA, ACM Press/Addison-Wesley Publishing Co. (1995), 210-217.
  • 4
    • 41849090898 scopus 로고    scopus 로고
    • D. Oard and J. Kim, Implicit feedback for recommender systems, in: Implicit Feedback for Recommender Systems, D. Oard and J. Kim, eds, In Proceedings of the AAAI Workshop on Recommender Systems, July 1998.
    • D. Oard and J. Kim, Implicit feedback for recommender systems, in: Implicit Feedback for Recommender Systems, D. Oard and J. Kim, eds, In Proceedings of the AAAI Workshop on Recommender Systems, July 1998.
  • 11
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Z. Huang, H. Chen and D. Zeng, Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering, ACM Trans Inf Syst 22 (2004), 116-142.
    • (2004) ACM Trans Inf Syst , vol.22 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 16
    • 18744367839 scopus 로고    scopus 로고
    • Unified Filtering by Combining Collaborative Filtering and Content-Based Filtering via Mixture Model and Exponential Model
    • Washington, D.C, USA
    • L. Si and R. Jin, Unified Filtering by Combining Collaborative Filtering and Content-Based Filtering via Mixture Model and Exponential Model, In: CIKM '04: Proceedings of the Thirteenth ACM conference on Information and knowledge management, Washington, D.C., USA, 2004, 156-157.
    • (2004) CIKM '04: Proceedings of the Thirteenth ACM conference on Information and knowledge management , pp. 156-157
    • Si, L.1    Jin, R.2
  • 20
    • 2942597326 scopus 로고    scopus 로고
    • Industry report: Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith and J. York, Industry report: Amazon.com recommendations: Item-to-item collaborative filtering, IEEE Distributed Systems Online 4 (2003).
    • (2003) IEEE Distributed Systems Online , vol.4
    • Linden, G.1    Smith, B.2    York, J.3
  • 22
    • 0013248646 scopus 로고    scopus 로고
    • Collaborative Filtering using Weighted Majority Prediction Algorithms
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
    • A. Nakamura and N. Abe, Collaborative Filtering using Weighted Majority Prediction Algorithms, In: ICML '98: Proceedings of the Fifteenth International Conference on Machine Learning, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc., 1998, 395-403.
    • (1998) ICML '98: Proceedings of the Fifteenth International Conference on Machine Learning , pp. 395-403
    • Nakamura, A.1    Abe, N.2
  • 23
    • 20844446208 scopus 로고    scopus 로고
    • Memory-Based Weighted-Majority Prediction for Recommender Systems
    • J. Delgado and N. Ishii, Memory-Based Weighted-Majority Prediction for Recommender Systems, In: Proceedings of the ACM SIGIR-99, 1999.
    • (1999) Proceedings of the ACM SIGIR-99
    • Delgado, J.1    Ishii, N.2
  • 24
    • 33745771256 scopus 로고    scopus 로고
    • T. Tang, P. Winoto and C. K.C., On the Temporal Analysis for Improved Hybrid Recommendations, In: Web Intelligence, 2003. WI2003. Proceedings. IEEE/WIC International Conference on, 2003, 214-220.
    • T. Tang, P. Winoto and C. K.C., On the Temporal Analysis for Improved Hybrid Recommendations, In: Web Intelligence, 2003. WI2003. Proceedings. IEEE/WIC International Conference on, 2003, 214-220.
  • 27
    • 26944460376 scopus 로고    scopus 로고
    • Y. Zhao, C. Zhang an S. Zhang, A Recent-Biased Dimension Reduction Technique for Time Series Data, In: PAKDD 2005: Advances in Knowledge Discovery and Data Mining: 9th Pacific-Asia Conference, Lecture Notes in Computer Science, 2005.
    • Y. Zhao, C. Zhang an S. Zhang, A Recent-Biased Dimension Reduction Technique for Time Series Data, In: PAKDD 2005: Advances in Knowledge Discovery and Data Mining: 9th Pacific-Asia Conference, Lecture Notes in Computer Science, 2005.
  • 29
    • 1842650939 scopus 로고    scopus 로고
    • Exploiting hierarchical domain structure to compute similarity, ACM
    • P. Ganesan, H. Garcia-Molina and J. Widom, Exploiting hierarchical domain structure to compute similarity, ACM Trans InfSyst 21 (2003), 64-93.
    • (2003) Trans InfSyst , vol.21 , pp. 64-93
    • Ganesan, P.1    Garcia-Molina, H.2    Widom, J.3
  • 30
    • 41849141708 scopus 로고    scopus 로고
    • J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993.
    • J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993.
  • 36
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning (1996), 69-101.
    • (1996) Machine Learning , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 39
    • 0033281653 scopus 로고    scopus 로고
    • The complexity of learning according to two models of a drifting environment
    • P.M. Long, The complexity of learning according to two models of a drifting environment, Machine Learning (1999), 337-354.
    • (1999) Machine Learning , pp. 337-354
    • Long, P.M.1
  • 40
    • 0034320912 scopus 로고    scopus 로고
    • Learning changing concepts by exploiting the structure of change
    • P.L. Bartlett, S. David and S. Kulkarni, Learning changing concepts by exploiting the structure of change, Machine Learning (2000), 153-174.
    • (2000) Machine Learning , pp. 153-174
    • Bartlett, P.L.1    David, S.2    Kulkarni, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.