-
2
-
-
84880083510
-
The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
-
Agarwal, S. The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In Proceedings of the SIAM International Conference on Data Mining, 2011.
-
Proceedings of the SIAM International Conference on Data Mining, 2011
-
-
Agarwal, S.1
-
3
-
-
84857615668
-
An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity
-
Ailon, N. An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity. Journal of Machine Learning Research, 13:137-164, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 137-164
-
-
Ailon, N.1
-
4
-
-
84897544221
-
A new active learning scheme with applications to learning to rank from pairwise preferences
-
arXiv abs/1110.2136
-
Ailon, N., Begleiter, R., and Ezra, E. A new active learning scheme with applications to learning to rank from pairwise preferences. arXiv CoRR, abs/1110.2136, 2011.
-
(2011)
CoRR
-
-
Ailon, N.1
Begleiter, R.2
Ezra, E.3
-
5
-
-
84856112569
-
Ranking: Compare, don't score
-
Ammar, A. and Shah, D. Ranking: Compare, don't score. In Proceedings of the 49th Annual Allerton Conference on Communication, Control and Computing (Allerton), pp. 776-783. 2011.
-
(2011)
Proceedings of the 49th Annual Allerton Conference on Communication, Control and Computing (Allerton)
, pp. 776-783
-
-
Ammar, A.1
Shah, D.2
-
7
-
-
84897505764
-
Sorting from noisy information
-
arXiv abs/0910.1191
-
Braverman, M. and Mossel, E. Sorting from noisy information. arXiv CoRR, abs/0910.1191, 2009.
-
(2009)
CoRR
-
-
Braverman, M.1
Mossel, E.2
-
8
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
Leen, T.K., Dietterich, T.G., and Tresp, V. (eds.), MIT Press
-
Cauwenberghs, G. and Poggio, T. Incremental and decremental support vector machine learning. In Leen, T.K., Dietterich, T.G., and Tresp, V. (eds.), Advances in Neural Information Processing Systems 13 (NIPS), pp. 409-415. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems 13 (NIPS)
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
9
-
-
77954412721
-
Ordering by weighted number of wins gives a good ranking for weighted tournaments
-
Coppersmith, D., Fleischer, L., and Rudra, A. Ordering by weighted number of wins gives a good ranking for weighted tournaments. ACM Transactions on Algorithms, 6(3):55:1-55:13, 2010.
-
(2010)
ACM Transactions on Algorithms
, vol.6
, Issue.3
-
-
Coppersmith, D.1
Fleischer, L.2
Rudra, A.3
-
10
-
-
84898970009
-
Log-linear models for label ranking
-
Thrun, S., Saul, L., and Scholkopf, B. (eds.), MIT Press
-
Dekel, O., Manning, C., and Singer, Y. Log-linear models for label ranking. In Thrun, S., Saul, L., and Scholkopf, B. (eds.), Advances in Neural Information Processing Systems 16 (NIPS). MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems 16 (NIPS)
-
-
Dekel, O.1
Manning, C.2
Singer, Y.3
-
12
-
-
0028516898
-
Computing with noisy information
-
Feige, U., Raghavan, P., Peleg, D., and Upfal, E. Computing with noisy information. SIAM Journal on Computing, 23(5):1001-1018, 1994.
-
(1994)
SIAM Journal on Computing
, vol.23
, Issue.5
, pp. 1001-1018
-
-
Feige, U.1
Raghavan, P.2
Peleg, D.3
Upfal, E.4
-
13
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4: 933-969, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
14
-
-
9144230885
-
Stein's method, Jack measure, and the Metropolis algorithm
-
DOI 10.1016/j.jcta.2004.07.003, PII S0097316504001104
-
Fulman, J. Stein's method, Jack measure, and the Metropolis algorithm. Journal of Combinatorial Theory. Senes A, 108(2):275-296, 2004. (Pubitemid 39546532)
-
(2004)
Journal of Combinatorial Theory. Series A
, vol.108
, Issue.2
, pp. 275-296
-
-
Fulman, J.1
-
15
-
-
61449176984
-
Approximate sorting
-
Giesen, J., Schuberth, E., and Stojaković, M. Approximate sorting. Fundamenta Informaticae, 90(1-2): 67-72, 2009.
-
(2009)
Fundamenta Informaticae
, vol.90
, Issue.1-2
, pp. 67-72
-
-
Giesen, J.1
Schuberth, E.2
Stojaković, M.3
-
17
-
-
84898956286
-
Parallel support vector machines: The cascade SVM
-
Saul, L.K., Weiss, Y., and Bottou, L. (eds.), MIT Press
-
Graf, H. P., Cosatto, E., Bottou, L., Durdanovic, I., and Vapnik, V. Parallel support vector machines: The cascade SVM. In Saul, L.K., Weiss, Y., and Bottou, L. (eds.), Advances in Neural Information Processing Systems 17 (NIPS). MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems 17 (NIPS)
-
-
Graf, H.P.1
Cosatto, E.2
Bottou, L.3
Durdanovic, I.4
Vapnik, V.5
-
18
-
-
52249111632
-
A parallel decomposition solver for SVM: Distributed dual ascend using Fenchel duality
-
Hazan, T., Man, A., and Shashua, A. A parallel decomposition solver for SVM: Distributed dual ascend using Fenchel duality. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-8, 2008.
-
(2008)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1-8
-
-
Hazan, T.1
Man, A.2
Shashua, A.3
-
19
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
MIT Press
-
Herbrich, R., Graepel, T., and Obermayer, K. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers, pp. 115-132. MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
20
-
-
85162426723
-
Active ranking using pairwise comparisons
-
Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., and Weinberger, K.Q. (eds.), MIT Press
-
Jamieson, K. G. and Nowak, R. Active ranking using pairwise comparisons. In Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., and Weinberger, K.Q. (eds.), Advances in Neural Information Processing Systems 24 (NIPS), pp. 2240-2248. MIT Press, 2011.
-
(2011)
Advances in Neural Information Processing Systems 24 (NIPS)
, pp. 2240-2248
-
-
Jamieson, K.G.1
Nowak, R.2
-
21
-
-
1842637192
-
Cumulated gain-based evaluation of IR techniques
-
DOI 10.1145/582415.582418
-
Järvelin, K. and Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(4):422-446, 2002. (Pubitemid 44642296)
-
(2002)
ACM Transactions on Information Systems
, vol.20
, Issue.4
, pp. 422-446
-
-
Jarvelin, K.1
Kekalainen, J.2
-
23
-
-
84856097565
-
User rankings from comparisons: Learning permutations in high dimensions
-
Mitliagkas, I., Gopalan, A., Caramanis, C., and Vishwanath, S. User rankings from comparisons: Learning permutations in high dimensions. In Proceedings of the 49th Annual Allerton Conference on Communication, Control and Computing (Allerton), 2011.
-
Proceedings of the 49th Annual Allerton Conference on Communication, Control and Computing (Allerton), 2011
-
-
Mitliagkas, I.1
Gopalan, A.2
Caramanis, C.3
Vishwanath, S.4
-
24
-
-
84877777099
-
Iterative ranking from pair-wise comparisons
-
Bartlett, P., Pereira, F., Burges, C., Bottou, L., and Weinberger, K. Q. (eds.), MIT Press
-
Negahban, S., Oh, S., and Shah, D. Iterative ranking from pair-wise comparisons. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 25 (NIPS), pp. 2483-2491. MIT Press, 2012.
-
(2012)
Advances in Neural Information Processing Systems 25 (NIPS)
, pp. 2483-2491
-
-
Negahban, S.1
Oh, S.2
Shah, D.3
-
25
-
-
79952387636
-
Ranking from pairs and triplets: Information quality, evaluation methods and query complexity
-
King, I., Nejdl, W., and Li, H. (eds.), ACM
-
Radinsky, K. and Ailon, N. Ranking from pairs and triplets: Information quality, evaluation methods and query complexity. In King, I., Nejdl, W., and Li, H. (eds.), Fourth ACM International Conference on Web Search and Data Mining (WSDM), pp. 105-114. ACM, 2011.
-
(2011)
Fourth ACM International Conference on Web Search and Data Mining (WSDM)
, pp. 105-114
-
-
Radinsky, K.1
Ailon, N.2
-
26
-
-
70450239631
-
The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list
-
Rudin, C. The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research, 10: 2233-2271, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2233-2271
-
-
Rudin, C.1
|