메뉴 건너뛰기




Volumn , Issue , 2008, Pages

A parallel decomposition solver for SVM: Distributed dual ascend using fenchel duality

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; DATA PROCESSING; FEATURE EXTRACTION; IMAGE PROCESSING; LEARNING SYSTEMS; PARALLEL ALGORITHMS; PATTERN RECOGNITION;

EID: 52249111632     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587354     Document Type: Conference Paper
Times cited : (24)

References (17)
  • 5
    • 0041657519 scopus 로고    scopus 로고
    • Interior-point methods for massive support vector machines
    • M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector machines. SIAM J. on Optimization, 13(3):783-804, 2002.
    • (2002) SIAM J. on Optimization , vol.13 , Issue.3 , pp. 783-804
    • Ferris, M.C.1    Munson, T.S.2
  • 6
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • 243264
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2(243264):20, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 20
    • Fine, S.1    Scheinberg, K.2
  • 8
    • 52249090995 scopus 로고    scopus 로고
    • Making large-Scale SVM Learning Practical. Advances in Kernel Methods-Support Vector Learning
    • T. Joachims. Making large-Scale SVM Learning Practical. Advances in Kernel Methods-Support Vector Learning. B. Scoelkopf, C. Burges, A. Smola, 1999.
    • (1999) B. Scoelkopf, C. Burges, A. Smola
    • Joachims, T.1
  • 9
    • 0003307180 scopus 로고    scopus 로고
    • Estimating the Generalization Performance of a SVM Efficiently
    • ICML, San Francisco
    • T. Joachims. Estimating the Generalization Performance of a SVM Efficiently. international conference on Machine Learning (ICML), pages 431-438, San Francisco 2000.
    • (2000) international conference on Machine Learning , pp. 431-438
    • Joachims, T.1
  • 11
    • 0026223084 scopus 로고    scopus 로고
    • Z. Luo and P. Tseng. On the convergence of a matrix splitting algorithm for the symmetric linear complementarity problem. SIAM J. on Control and Opt., 29(5):1037-1060, 1991.
    • Z. Luo and P. Tseng. On the convergence of a matrix splitting algorithm for the symmetric linear complementarity problem. SIAM J. on Control and Opt., 29(5):1037-1060, 1991.
  • 13
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. Advances in Kernel Methods-Support Vector Learning, pages 185-208, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 16
    • 33745784205 scopus 로고    scopus 로고
    • L. Zanni, T. Serafini and G. Zanghirati. Parallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems. Journal of Machine Learning Research 7:14671492, 2006.
    • L. Zanni, T. Serafini and G. Zanghirati. Parallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems. Journal of Machine Learning Research 7:14671492, 2006.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.