메뉴 건너뛰기




Volumn 34, Issue 3, 2010, Pages 321-329

Classification of emg signals using neuro-fuzzy system and diagnosis of neuromuscular diseases

Author keywords

Autoregressive (AR); EMG; Neuro Fuzzy classification (NEFCLASS)

Indexed keywords

ADOLESCENT; ADULT; ARTICLE; CHILD; CLASSIFICATION; CONTROLLED STUDY; ELECTROMYOGRAM; FUZZY SYSTEM; HUMAN; INFANT; MAJOR CLINICAL STUDY; MUSCLE POTENTIAL; MYOPATHY; NEUROMUSCULAR DISEASE; NEUROPATHY; PARAMETER; PRESCHOOL CHILD; SCHOOL CHILD; SIGNAL DETECTION; ARTIFICIAL NEURAL NETWORK; ELECTROMYOGRAPHY; FUZZY LOGIC; SIGNAL PROCESSING; STANDARD;

EID: 77954080796     PISSN: 01485598     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10916-008-9244-7     Document Type: Article
Times cited : (38)

References (36)
  • 3
    • 0022922393 scopus 로고
    • Quantitative analysis of individual motor unit potentials: A proposition for standardized terminology f1and criteria for measurement
    • Stalberg, E., Andreassen, S., Falck, B., Lang, H., Rosenfalck, A., and Trojaborg, W., Quantitative analysis of individual motor unit potentials: a proposition for standardized terminology f1and criteria for measurement. Journal of Clinical Neurophysiology. 3:4313-4348, 1986.
    • (1986) Journal of Clinical Neurophysiology , vol.3 , pp. 4313-4348
    • Stalberg, E.1    Andreassen, S.2    Falck, B.3    Lang, H.4    Rosenfalck, A.5    Trojaborg, W.6
  • 6
    • 0016482611 scopus 로고
    • Functional separation of EMG signals via ARMA identification methods for prosthetic control purposes
    • Graupe, D., and Cline, W. K., Functional Separation of EMG Signals via ARMA Identification Methods for Prosthetic Control Purposes. IEEE Transactions on Systems, Man, and Cybernetics. 5:252-259, 1975.
    • (1975) IEEE Transactions on Systems, Man, and Cybernetics , vol.5 , pp. 252-259
    • Graupe, D.1    Cline, W.K.2
  • 7
    • 0021056442 scopus 로고
    • Interference electromyogram processing-Part II: experimental and simulated EMG AR modeling
    • Coatrieux, J. L., Interference electromyogram processing-Part II: experimental and simulated EMG AR modeling. Electromyography Clinical Neurophysiologie. 23:481-490, 1983.
    • (1983) Electromyography Clinical Neurophysiologie , vol.23 , pp. 481-490
    • Coatrieux, J.L.1
  • 8
    • 0021328437 scopus 로고
    • The parametrization of the electromyographic signal: an approach based on simulated EMG signals
    • Maranzana, M. F., Molinari, R., and Somma-Riva, G., The parametrization of the electromyographic signal: an approach based on simulated EMG signals. Electromyography Clinical Neurophysiologie. 24:47-65, 1984.
    • (1984) Electromyography Clinical Neurophysiologie , vol.24 , pp. 47-65
    • Maranzana, M.F.1    Molinari, R.2    Somma-Riva, G.3
  • 9
    • 0022344795 scopus 로고
    • Electrodiagnostic Model for Motor Unit Action Potential (MUAP) Generation
    • Basmajian, J. V. et al. (1985). Electrodiagnostic Model for Motor Unit Action Potential (MUAP) Generation, American Journal of Physical Medicine, 64(6).
    • (1985) American Journal of Physical Medicine , vol.64 , Issue.6
    • Basmajian, J.V.1
  • 10
    • 0029347476 scopus 로고
    • The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition
    • doi:10.1109/10.398638
    • Kang, W. J., Shiu, J. R., Cheng, C. K., Lai, J. S., Tsao, H. W., and Kuo, T. S., The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition. IEEE Transactions on Biomedical Engineering. 42:8777-785, 1995. doi:10.1109/10.398638.
    • (1995) IEEE Transactions on Biomedical Engineering. , vol.42 , pp. 8777-785
    • Kang, W.J.1    Shiu, J.R.2    Cheng, C.K.3    Lai, J.S.4    Tsao, H.W.5    Kuo, T.S.6
  • 11
    • 0030025925 scopus 로고    scopus 로고
    • Farrow, neural network analysis of the EMG interference pattern
    • doi:10.1016/ 1350-4533(95)00032-1.
    • Abel, E. W., Zacharia, P. C., Forster, A., and Farrow, T. L., Farrow, neural network analysis of the EMG interference pattern. Medical engineering and physics. 18:12-17, 1996. doi:10.1016/1350-4533(95)00032-1.
    • (1996) Medical engineering and physics , vol.18 , pp. 12-17
    • Abel, E.W.1    Zacharia, P.C.2    Forster, A.3    Farrow, T.L.4
  • 12
    • 0031592343 scopus 로고    scopus 로고
    • Prediction of dynamic tendon forces from electromyographic signals: An artificial neural network approach
    • Savelberg, H. H., and Herzog, W., Prediction of dynamic tendon forces from electromyographic signals: an artificial neural network approach. Journal of Neuroscience Methods. 30;78:1- 265-274, 1997.
    • (1997) Journal of Neuroscience Methods , vol.30-78 , Issue.1 , pp. 265-274
    • Savelberg, H.H.1    Herzog, W.2
  • 13
    • 0028670652 scopus 로고
    • Automatic diagnosis of neuromuscular diseases using neural network
    • Kumaravel, N., and Kavitha, V., Automatic diagnosis of neuromuscular diseases using neural network. Biomedical sciences instrumentation. 30:245-250, 1994.
    • (1994) Biomedical Sciences Instrumentation , vol.30 , pp. 245-250
    • Kumaravel, N.1    Kavitha, V.2
  • 14
    • 0032744849 scopus 로고    scopus 로고
    • Autoregressive and cepstral analysis the motor unit potential
    • doi:10.1016/S1350-4533(99)00072-7.
    • Pattichis, C. S., and Elia, G. A., Autoregressive and cepstral analysis the motor unit potential. Medical engineering and physics. 21:405-419, 1999. doi:10.1016/S1350-4533(99)00072-7.
    • (1999) Medical Engineering and Physics , vol.21 , pp. 405-419
    • Pattichis, C.S.1    Elia, G.A.2
  • 15
    • 0031106716 scopus 로고    scopus 로고
    • A neural network model for simulation of torso muscle coordination
    • doi:10.1016/ S0021-9290(96)00138-148.
    • Nussbaum, M. A., Martin, B. J., and Chaffin, D. B., A neural network model for simulation of torso muscle coordination. Journal of Biomechanics. 30:3251-258, 1997. doi:10.1016/ S0021-9290(96)00138-148
    • (1997) Journal of Biomechanics , vol.30 , pp. 3251-3258
    • Nussbaum, M.A.1    Martin, B.J.2    Chaffin, D.B.3
  • 17
    • 0030262959 scopus 로고    scopus 로고
    • Myoelectric teleoperation of a complex robotic hand
    • doi:10.1109/70.538982.
    • Farry, K. A., and Walker, I. D., Myoelectric teleoperation of a complex robotic hand. IEEE Transactions on Robotics and Automation. 12:5775-788, 1996. doi:10.1109/70.538982.
    • (1996) IEEE Transactions on Robotics and Automation , vol.12 , pp. 5775-5788
    • Farry, K.A.1    Walker, I.D.2
  • 18
    • 0028784350 scopus 로고
    • A neural network confirms that physical exercise reverses EEG changes in depressed rats
    • Sarbadhikari, S. N., A neural network confirms that physical exercise reverses EEG changes in depressed rats. Medical engineering and physics. 17:18579-582, 1995.
    • (1995) Medical Engineering and Physics , vol.17 , pp. 18579-18582
    • Sarbadhikari, S.N.1
  • 19
    • 0034123270 scopus 로고    scopus 로고
    • Computerized classification of corpus cavernosum EMG signals by use of discrimant analysis and ANN to support diagnosis of erectile dysfunction
    • doi:10.1007/s002400050002.
    • Kellner, B., Stief, C. G., Hinrichs, H., and Hartung, C., Computerized classification of corpus cavernosum EMG signals by use of discrimant analysis and ANN to support diagnosis of erectile dysfunction. Urological research. 28:6-13, 2000. doi:10.1007/ s002400050002.
    • (2000) Urological Research , vol.28 , pp. 6-13
    • Kellner, B.1    Stief, C.G.2    Hinrichs, H.3    Hartung, C.4
  • 20
    • 21544468321 scopus 로고    scopus 로고
    • Classification of EMG Signals Using PCA and FFT
    • June 2005
    • Güler N. F., Koçer S. (2005). Classification of EMG Signals Using PCA and FFT. Journal of Medical Systems, 29(3), (June 2005).
    • (2005) Journal of Medical Systems , vol.29 , Issue.3
    • Güler, N.F.1    Koçer, S.2
  • 21
    • 21644434168 scopus 로고    scopus 로고
    • Use of support vector machines and neural network in diagnosis of neuromuscular disorders
    • June 2005
    • G̈ler N. F., Koçer S (2005). Use of Support Vector Machines and Neural Network in Diagnosis of Neuromuscular Disorders, Journal of Medical Systems, 29(3), (June 2005).
    • (2005) Journal of Medical Systems , vol.29 , Issue.3
    • Güler, N.F.1    Koçer, S.2
  • 22
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • doi:10.1016/S0165-0114(97)00009-2.
    • Nauck, D., and Kruse, R., A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy sets and systems. 89:277- 288, 1997. doi:10.1016/S0165-0114(97)00009-2.
    • (1997) Fuzzy Sets and Systems , vol.89 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 23
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • doi:10.1016/S0933-3657(98)00070-0.
    • Nauck, D., and Kruse, R., Obtaining interpretable fuzzy classification rules from medical data. Artificial intelligence in medicine. 16:149-169, 1999. doi:10.1016/S0933-3657(98)00070-0.
    • (1999) Artificial Intelligence in Medicine. , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 24
    • 0035437751 scopus 로고    scopus 로고
    • Compensatory fuzzy neural networks-based intelligent detection of abnormal neonatal cerebral Doppler ultrasound waveform
    • doi:10.1109/4233.945289.
    • Şeker, H., Evans, D. H., Aydin, N., and Yazgan, E., Compensatory fuzzy neural Networks-based intelligent detection of abnormal neonatal cerebral Doppler ultrasound waveforms. IEEE transactions on information technology in biomedicine. 5:3187-194, 2001. doi:10.1109/4233.945289.
    • (2001) IEEE Transactions on Information Technology in Biomedicine , vol.5 , pp. 3187-3194
    • Şeker, H.1    Evans, D.H.2    Aydin, N.3    Yazgan, E.4
  • 25
    • 2142645010 scopus 로고    scopus 로고
    • Application of FFT analyzed cardiac doppler signals to fuzzy algorithm
    • doi:10.1016/S0010- 4825(02)00021-25.
    • Guler, I., Hardalaç, F., and Barisci, N., Application of FFT analyzed cardiac doppler signals to fuzzy algorithm. Computers in biology and medicine. 32:435-444, 2002. doi:10.1016/S0010- 4825(02)00021-5.
    • (2002) Computers in Biology and Medicine , vol.32 , pp. 435-444
    • Guler, I.1    Hardalaç, F.2    Barisci, N.3
  • 28
    • 77954564431 scopus 로고
    • Maximum entropy spectrl analysis
    • Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City ,In: ChilderD. G. (Ed.), New York., 1967.
    • Burg, J. P., Maximum entropy spectral analysis. Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City, 1967. In: ChilderD. G. (Ed.), Modern spectrum analysisIEEE, New York, 1967.
    • (1967) Modern Spectrum AnalysisIEEE
    • Burg, J.P.1
  • 29
    • 0018024556 scopus 로고
    • Maximum entropy spectral estimation using the analytical signal
    • doi:10.1109/TASSP.1978.1163127.
    • Kay, S. M., Maximum entropy spectral estimation using the analytical signal. IEEE Transactions on Acoustics Speech Signal Processing. 26:467-469, 1978. doi:10.1109/TASSP.1978.1163127.
    • (1978) IEEE Transactions on Acoustics Speech Signal Processing , vol.26 , pp. 467-469
    • Kay, S.M.1
  • 31
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • doi:10.1109/ TAC.1974.1100705.
    • Akaike, H., A new look at the statistical model identification. IEEE Transactions Automatic Control. 19:716-723, 1974. doi:10.1109/ TAC.1974.1100705.
    • (1974) IEEE Transactions Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 34
    • 0012045480 scopus 로고
    • Fuzzy neural networks: A survey
    • doi:10.1016/0165-0114 (94) 90297-90306.
    • Buckley, J. J., and Hayashi, Y., Fuzzy neural networks: a survey. Fuzzy sets and systems. 66:1-13, 1994. doi:10.1016/0165-0114 (94)90297-90306
    • (1994) Fuzzy Sets and Systems , vol.66 , pp. 1-13
    • Buckley, J.J.1    Hayashi, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.