-
1
-
-
0034677966
-
Drug discovery: A historical perspective
-
Drews J. Drug discovery: a historical perspective. Science 287, 1960-1964 (2000).
-
(2000)
Science
, vol.287
, pp. 1960-1964
-
-
Drews, J.1
-
2
-
-
33749234216
-
Drugs, their targets and the nature and number of drug targets
-
Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821-834 (2006).
-
(2006)
Nat. Rev. Drug Discov.
, vol.5
, pp. 821-834
-
-
Imming, P.1
Sinning, C.2
Meyer, A.3
-
3
-
-
0038522853
-
Multidimensional chemical genetic analysis of diversity oriented synthesis-derived deacetylase inhibitors using cell-based assays
-
Haggarty SJ, Koeller KM, Wong JC, Butcher RA, Schreiber SL. Multidimensional chemical genetic analysis of diversity oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 10, 383-396 (2003).
-
(2003)
Chem. Biol.
, vol.10
, pp. 383-396
-
-
Haggarty, S.J.1
Koeller, K.M.2
Wong, J.C.3
Butcher, R.A.4
Schreiber, S.L.5
-
4
-
-
0037061492
-
Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays
-
Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653-657 (2002).
-
(2002)
Nature
, vol.416
, pp. 653-657
-
-
Kuruvilla, F.G.1
Shamji, A.F.2
Sternson, S.M.3
Hergenrother, P.J.4
Schreiber, S.L.5
-
5
-
-
33846155913
-
Structure-based maximal affinity model predicts small molecule druggability
-
Cheng AC, Coleman RG, Smyth KT et al. Structure-based maximal affinity model predicts small molecule druggability. Nat. Biotechnol. 25, 71-75 (2007).
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 71-75
-
-
Cheng, A.C.1
Coleman, R.G.2
Smyth, K.T.3
-
7
-
-
77956953029
-
Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
-
Xia Z, Wu LY, Zhou X, Wong ST. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4, S6 (2010).
-
(2010)
BMC Syst. Biol.
, vol.4
-
-
Xia, Z.1
Wu, L.Y.2
Zhou, X.3
Wong, S.T.4
-
8
-
-
84877131233
-
A semi-supervised method for drug-target interaction prediction with consistency in networks
-
Chen H, Zhang Z. A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS ONE 8(5), e62975 (2013).
-
(2013)
PLoS ONE
, vol.8
, Issue.5
-
-
Chen, H.1
Zhang, Z.2
-
9
-
-
46249090791
-
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
-
Yamanishi Y, Araki M, Cutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232-i240 (2008).
-
(2008)
Bioinformatics
, vol.24
-
-
Yamanishi, Y.1
Araki, M.2
Cutteridge, A.3
Honda, W.4
Kanehisa, M.5
-
10
-
-
84866459051
-
Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
-
Gönen M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304-2310 (2012).
-
(2012)
Bioinformatics
, vol.28
, Issue.18
, pp. 2304-2310
-
-
Gönen, M.1
-
11
-
-
69849094133
-
Supervised prediction of drug-target interactions using bipartite local models
-
Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25, 2397-2403 (2009).
-
(2009)
Bioinformatics
, vol.25
, pp. 2397-2403
-
-
Bleakley, K.1
Yamanishi, Y.2
-
12
-
-
84872509876
-
Drug-target interaction prediction by learning from local information and neighbors
-
Mei JP, Kwoh CK, Yang P, Li XL, Zheng J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238-245 (2013).
-
(2013)
Bioinformatics
, vol.29
, Issue.2
, pp. 238-245
-
-
Mei, J.P.1
Kwoh, C.K.2
Yang, P.3
Li, X.L.4
Zheng, J.5
-
13
-
-
84880993729
-
Drug-target interaction prediction through domain-tuned network-based inference
-
Alaimo S, Pulvirenti A, Giugno R, Ferro A. Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 29(16), 2004-2008 (2013).
-
(2013)
Bioinformatics
, vol.29
, Issue.16
, pp. 2004-2008
-
-
Alaimo, S.1
Pulvirenti, A.2
Giugno, R.3
Ferro, A.4
-
14
-
-
84863695210
-
Prediction of drug-target interactions and drug repositioning via network-based inference
-
Cheng F, Liu C, Jiang J et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012).
-
(2012)
PLoS Comput. Biol.
, vol.8
, Issue.5
-
-
Cheng, F.1
Liu, C.2
Jiang, J.3
-
15
-
-
38549151817
-
DrugBank: A knowledgebase for drugs, drug actions and drug targets
-
Wishart DS, Knox C, Guo AC et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901-D906 (2008).
-
(2008)
Nucleic Acids Res.
, vol.36
-
-
Wishart, D.S.1
Knox, C.2
Guo, A.C.3
-
16
-
-
13444266370
-
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
-
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514-D517 (2005).
-
(2005)
Nucleic Acids Res.
, vol.33
-
-
Hamosh, A.1
Scott, A.F.2
Amberger, J.S.3
Bocchini, C.A.4
McKusick, V.A.5
-
17
-
-
66449084442
-
Infrastructure for the life sciences: Design and implementation of the UniProt website
-
Jain E, Bairoch A, Duvaud S et al. Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10, 136 (2009).
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 136
-
-
Jain, E.1
Bairoch, A.2
Duvaud, S.3
-
18
-
-
33644874819
-
From genomics to chemical genomics: New developments in KEGG
-
Kanehisa M, Goto S, Hattori M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354-D357 (2006).
-
(2006)
Nucleic Acids Res.
, vol.34
-
-
Kanehisa, M.1
Goto, S.2
Hattori, M.3
-
19
-
-
0025183708
-
Basic local alignment search tool
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
-
(1990)
J. Mol. Biol.
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
20
-
-
0141843591
-
Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways
-
Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125, 11853-11865 (2003).
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 11853-11865
-
-
Hattori, M.1
Okuno, Y.2
Goto, S.3
Kanehisa, M.4
-
21
-
-
14944357243
-
Heuristics for chemical compound matching
-
Hattori M, Okuno Y, Goto S, Kanehisa M. Heuristics for chemical compound matching. Genome Inform. 14, 144-155 (2003).
-
(2003)
Genome Inform.
, vol.14
, pp. 144-155
-
-
Hattori, M.1
Okuno, Y.2
Goto, S.3
Kanehisa, M.4
-
22
-
-
77950448057
-
Predicting drug-target interaction networks based on functional groups and biological features
-
He Z, Zhang J, Shi XH et al. Predicting drug-target interaction networks based on functional groups and biological features. PLoS ONE 5, e9603 (2010).
-
(2010)
PLoS ONE
, vol.5
-
-
He, Z.1
Zhang, J.2
Shi, X.H.3
-
23
-
-
77955283880
-
An improved classification of G-protein-coupled receptors using sequence-derived features
-
Peng ZL, Yang JY, Chen X. An improved classification of G-protein-coupled receptors using sequence-derived features. BMC Bioinformatics 11, 420 (2010).
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 420
-
-
Peng, Z.L.1
Yang, J.Y.2
Chen, X.3
-
24
-
-
33747816816
-
PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
-
Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ. PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 34, W32-W37 (2006).
-
(2006)
Nucleic Acids Res.
, vol.34
-
-
Li, Z.R.1
Lin, H.H.2
Han, L.Y.3
Jiang, L.4
Chen, X.5
Chen, Y.Z.6
-
25
-
-
27344459398
-
Virtual computational chemistry laboratory-design and description
-
Tetko IV, Gasteiger J, Todeschini R et al. Virtual computational chemistry laboratory-design and description. J. Comput. Aid Mol. Des. 19, 453-463 (2005).
-
(2005)
J. Comput. Aid Mol. Des.
, vol.19
, pp. 453-463
-
-
Tetko, I.V.1
Gasteiger, J.2
Todeschini, R.3
-
26
-
-
0034069495
-
Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
-
Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1), 25-29 (2000).
-
(2000)
Nat. Genet.
, vol.25
, Issue.1
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
-
27
-
-
0002016474
-
Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language
-
Resnik P. Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11, 95-130 (1999).
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 95-130
-
-
Resnik, P.1
-
28
-
-
67849110934
-
Fast gene ontology based clustering for microarray experiments
-
Ovaska K, Laakso M, Hautaniemi S. Fast gene ontology based clustering for microarray experiments. BioData Min. 1, 11 (2008).
-
(2008)
BioData Min.
, vol.1
, pp. 11
-
-
Ovaska, K.1
Laakso, M.2
Hautaniemi, S.3
-
29
-
-
52249109156
-
Gene selection algorithm by combining reliefF and mRMR
-
Zhang Y, Ding D, Li T. Gene selection algorithm by combining reliefF and mRMR. BMC Genomics 9, S27 (2008).
-
(2008)
BMC Genomics
, vol.9
-
-
Zhang, Y.1
Ding, D.2
Li, T.3
-
30
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53, 23-69 (2003).
-
(2003)
Mach. Learn.
, vol.53
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
31
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507-2517 (2007).
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
32
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy
-
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and minredundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226-1238 (2005).
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
33
-
-
67349231310
-
Using support vector machine with a hybrid feature selection method to the stock trend prediction
-
Lee MC. Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Syst. Appl. 36(8), 10896-10904 (2009).
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.8
, pp. 10896-10904
-
-
Lee, M.C.1
-
34
-
-
84897077112
-
Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
-
Widodo A, Yang BS. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 36(7), 10266-10273 (2007).
-
(2007)
Expert Syst. Appl.
, vol.36
, Issue.7
, pp. 10266-10273
-
-
Widodo, A.1
Yang, B.S.2
-
35
-
-
84899006908
-
Learning with local and global consistency
-
Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B. Learning with local and global consistency. Advances in Neural Information Processing System 16, 321-328 (2004).
-
(2004)
Advances in Neural Information Processing System
, vol.16
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
36
-
-
60849118651
-
Semi-supervised protein subcellular localization
-
Xu Q, Hu QX, Xue H, Yu W, Yang Q. Semi-supervised protein subcellular localization. BMC Bioinformatics 10, S47 (2009).
-
(2009)
BMC Bioinformatics
, vol.10
-
-
Xu, Q.1
Hu, Q.X.2
Xue, H.3
Yu, W.4
Yang, Q.5
-
37
-
-
77955106017
-
A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network
-
You ZH, Yin Z, Han K, Huang DS, Zhou X. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinformatics 11, 343 (2010).
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 343
-
-
Zh, Y.1
Yin, Z.2
Han, K.3
Huang, D.S.4
Zhou, X.5
-
38
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Gestel TV, Suykens JAK, Baesens B et al. Benchmarking least squares support vector machine classifiers. Mach. Learn. 54(1), 5-32 (2004).
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 5-32
-
-
Gestel, T.V.1
Jak, S.2
Baesens, B.3
-
39
-
-
44649148478
-
MiRTif: A support vector machine-based microRNA target interaction filter
-
Yang Y, Wang YP, Li KB. MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinformatics 9, S4 (2008).
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Yang, Y.1
Wang, Y.P.2
Li, K.B.3
-
43
-
-
2342446592
-
Receiver Operating Characteristic (ROC) curve practical review for radiologists
-
Park SH, Goo JM, Jo CH. Receiver Operating Characteristic (ROC) curve practical review for radiologists. Korean J. Radiol. 5, 11-18 (2004).
-
(2004)
Korean J. Radiol.
, vol.5
, pp. 11-18
-
-
Park, S.H.1
Goo, J.M.2
Jo, C.H.3
-
44
-
-
54249155522
-
Network pharmacology: The next paradigm in drug discovery
-
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682-690 (2008).
-
(2008)
Nat. Chem. Biol.
, vol.4
, pp. 682-690
-
-
Hopkins, A.L.1
-
45
-
-
77952627289
-
Drug-target networks
-
Vogt I, Mestres J. Drug-target networks. Mol. Inform. 29, 10-14 (2010).
-
(2010)
Mol. Inform.
, vol.29
, pp. 10-14
-
-
Vogt, I.1
Mestres, J.2
|