메뉴 건너뛰기




Volumn 14, Issue 14, 2013, Pages 1701-1707

Predicting drug-Target interaction networks of human diseases based on multiple feature information

Author keywords

Disease network; Drug target interaction; Semisupervised learning

Indexed keywords

ARTICLE; CHEMICAL STRUCTURE; CONTROLLED STUDY; DISEASE NETWORK; DRUG TARGET INTERACTION; GRAPH BASED SEMISUPERVISED LEARNING; MACHINE LEARNING; MEASUREMENT PRECISION; MEDICAL PARAMETERS; MOLECULAR INTERACTION; PREDICTION; RECEIVER OPERATING CHARACTERISTIC; REDUNDANCY ANALYSIS; SEQUENCE ANALYSIS; SUPPORT VECTOR MACHINE; DRUG COMBINATION; DRUG THERAPY; HUMAN; MEDICAL INFORMATICS; MOLECULARLY TARGETED THERAPY; PROCEDURES;

EID: 84897036223     PISSN: 14622416     EISSN: 17448042     Source Type: Journal    
DOI: 10.2217/pgs.13.162     Document Type: Article
Times cited : (13)

References (46)
  • 1
    • 0034677966 scopus 로고    scopus 로고
    • Drug discovery: A historical perspective
    • Drews J. Drug discovery: a historical perspective. Science 287, 1960-1964 (2000).
    • (2000) Science , vol.287 , pp. 1960-1964
    • Drews, J.1
  • 2
    • 33749234216 scopus 로고    scopus 로고
    • Drugs, their targets and the nature and number of drug targets
    • Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821-834 (2006).
    • (2006) Nat. Rev. Drug Discov. , vol.5 , pp. 821-834
    • Imming, P.1    Sinning, C.2    Meyer, A.3
  • 3
    • 0038522853 scopus 로고    scopus 로고
    • Multidimensional chemical genetic analysis of diversity oriented synthesis-derived deacetylase inhibitors using cell-based assays
    • Haggarty SJ, Koeller KM, Wong JC, Butcher RA, Schreiber SL. Multidimensional chemical genetic analysis of diversity oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 10, 383-396 (2003).
    • (2003) Chem. Biol. , vol.10 , pp. 383-396
    • Haggarty, S.J.1    Koeller, K.M.2    Wong, J.C.3    Butcher, R.A.4    Schreiber, S.L.5
  • 4
    • 0037061492 scopus 로고    scopus 로고
    • Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays
    • Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653-657 (2002).
    • (2002) Nature , vol.416 , pp. 653-657
    • Kuruvilla, F.G.1    Shamji, A.F.2    Sternson, S.M.3    Hergenrother, P.J.4    Schreiber, S.L.5
  • 5
    • 33846155913 scopus 로고    scopus 로고
    • Structure-based maximal affinity model predicts small molecule druggability
    • Cheng AC, Coleman RG, Smyth KT et al. Structure-based maximal affinity model predicts small molecule druggability. Nat. Biotechnol. 25, 71-75 (2007).
    • (2007) Nat. Biotechnol. , vol.25 , pp. 71-75
    • Cheng, A.C.1    Coleman, R.G.2    Smyth, K.T.3
  • 7
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • Xia Z, Wu LY, Zhou X, Wong ST. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4, S6 (2010).
    • (2010) BMC Syst. Biol. , vol.4
    • Xia, Z.1    Wu, L.Y.2    Zhou, X.3    Wong, S.T.4
  • 8
    • 84877131233 scopus 로고    scopus 로고
    • A semi-supervised method for drug-target interaction prediction with consistency in networks
    • Chen H, Zhang Z. A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS ONE 8(5), e62975 (2013).
    • (2013) PLoS ONE , vol.8 , Issue.5
    • Chen, H.1    Zhang, Z.2
  • 9
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi Y, Araki M, Cutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232-i240 (2008).
    • (2008) Bioinformatics , vol.24
    • Yamanishi, Y.1    Araki, M.2    Cutteridge, A.3    Honda, W.4    Kanehisa, M.5
  • 10
    • 84866459051 scopus 로고    scopus 로고
    • Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
    • Gönen M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304-2310 (2012).
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 2304-2310
    • Gönen, M.1
  • 11
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25, 2397-2403 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 12
    • 84872509876 scopus 로고    scopus 로고
    • Drug-target interaction prediction by learning from local information and neighbors
    • Mei JP, Kwoh CK, Yang P, Li XL, Zheng J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238-245 (2013).
    • (2013) Bioinformatics , vol.29 , Issue.2 , pp. 238-245
    • Mei, J.P.1    Kwoh, C.K.2    Yang, P.3    Li, X.L.4    Zheng, J.5
  • 13
    • 84880993729 scopus 로고    scopus 로고
    • Drug-target interaction prediction through domain-tuned network-based inference
    • Alaimo S, Pulvirenti A, Giugno R, Ferro A. Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 29(16), 2004-2008 (2013).
    • (2013) Bioinformatics , vol.29 , Issue.16 , pp. 2004-2008
    • Alaimo, S.1    Pulvirenti, A.2    Giugno, R.3    Ferro, A.4
  • 14
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • Cheng F, Liu C, Jiang J et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012).
    • (2012) PLoS Comput. Biol. , vol.8 , Issue.5
    • Cheng, F.1    Liu, C.2    Jiang, J.3
  • 15
    • 38549151817 scopus 로고    scopus 로고
    • DrugBank: A knowledgebase for drugs, drug actions and drug targets
    • Wishart DS, Knox C, Guo AC et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901-D906 (2008).
    • (2008) Nucleic Acids Res. , vol.36
    • Wishart, D.S.1    Knox, C.2    Guo, A.C.3
  • 16
    • 13444266370 scopus 로고    scopus 로고
    • Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
    • Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514-D517 (2005).
    • (2005) Nucleic Acids Res. , vol.33
    • Hamosh, A.1    Scott, A.F.2    Amberger, J.S.3    Bocchini, C.A.4    McKusick, V.A.5
  • 17
    • 66449084442 scopus 로고    scopus 로고
    • Infrastructure for the life sciences: Design and implementation of the UniProt website
    • Jain E, Bairoch A, Duvaud S et al. Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10, 136 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 136
    • Jain, E.1    Bairoch, A.2    Duvaud, S.3
  • 18
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: New developments in KEGG
    • Kanehisa M, Goto S, Hattori M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354-D357 (2006).
    • (2006) Nucleic Acids Res. , vol.34
    • Kanehisa, M.1    Goto, S.2    Hattori, M.3
  • 20
    • 0141843591 scopus 로고    scopus 로고
    • Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways
    • Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125, 11853-11865 (2003).
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 11853-11865
    • Hattori, M.1    Okuno, Y.2    Goto, S.3    Kanehisa, M.4
  • 22
    • 77950448057 scopus 로고    scopus 로고
    • Predicting drug-target interaction networks based on functional groups and biological features
    • He Z, Zhang J, Shi XH et al. Predicting drug-target interaction networks based on functional groups and biological features. PLoS ONE 5, e9603 (2010).
    • (2010) PLoS ONE , vol.5
    • He, Z.1    Zhang, J.2    Shi, X.H.3
  • 23
    • 77955283880 scopus 로고    scopus 로고
    • An improved classification of G-protein-coupled receptors using sequence-derived features
    • Peng ZL, Yang JY, Chen X. An improved classification of G-protein-coupled receptors using sequence-derived features. BMC Bioinformatics 11, 420 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 420
    • Peng, Z.L.1    Yang, J.Y.2    Chen, X.3
  • 24
    • 33747816816 scopus 로고    scopus 로고
    • PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
    • Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ. PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 34, W32-W37 (2006).
    • (2006) Nucleic Acids Res. , vol.34
    • Li, Z.R.1    Lin, H.H.2    Han, L.Y.3    Jiang, L.4    Chen, X.5    Chen, Y.Z.6
  • 25
    • 27344459398 scopus 로고    scopus 로고
    • Virtual computational chemistry laboratory-design and description
    • Tetko IV, Gasteiger J, Todeschini R et al. Virtual computational chemistry laboratory-design and description. J. Comput. Aid Mol. Des. 19, 453-463 (2005).
    • (2005) J. Comput. Aid Mol. Des. , vol.19 , pp. 453-463
    • Tetko, I.V.1    Gasteiger, J.2    Todeschini, R.3
  • 26
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
    • Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1), 25-29 (2000).
    • (2000) Nat. Genet. , vol.25 , Issue.1 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 27
    • 0002016474 scopus 로고    scopus 로고
    • Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language
    • Resnik P. Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11, 95-130 (1999).
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 95-130
    • Resnik, P.1
  • 28
    • 67849110934 scopus 로고    scopus 로고
    • Fast gene ontology based clustering for microarray experiments
    • Ovaska K, Laakso M, Hautaniemi S. Fast gene ontology based clustering for microarray experiments. BioData Min. 1, 11 (2008).
    • (2008) BioData Min. , vol.1 , pp. 11
    • Ovaska, K.1    Laakso, M.2    Hautaniemi, S.3
  • 29
    • 52249109156 scopus 로고    scopus 로고
    • Gene selection algorithm by combining reliefF and mRMR
    • Zhang Y, Ding D, Li T. Gene selection algorithm by combining reliefF and mRMR. BMC Genomics 9, S27 (2008).
    • (2008) BMC Genomics , vol.9
    • Zhang, Y.1    Ding, D.2    Li, T.3
  • 30
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53, 23-69 (2003).
    • (2003) Mach. Learn. , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 31
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507-2517 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 32
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy
    • Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and minredundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226-1238 (2005).
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 33
    • 67349231310 scopus 로고    scopus 로고
    • Using support vector machine with a hybrid feature selection method to the stock trend prediction
    • Lee MC. Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Syst. Appl. 36(8), 10896-10904 (2009).
    • (2009) Expert Syst. Appl. , vol.36 , Issue.8 , pp. 10896-10904
    • Lee, M.C.1
  • 34
    • 84897077112 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • Widodo A, Yang BS. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 36(7), 10266-10273 (2007).
    • (2007) Expert Syst. Appl. , vol.36 , Issue.7 , pp. 10266-10273
    • Widodo, A.1    Yang, B.S.2
  • 37
    • 77955106017 scopus 로고    scopus 로고
    • A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network
    • You ZH, Yin Z, Han K, Huang DS, Zhou X. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinformatics 11, 343 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 343
    • Zh, Y.1    Yin, Z.2    Han, K.3    Huang, D.S.4    Zhou, X.5
  • 38
    • 0242288903 scopus 로고    scopus 로고
    • Benchmarking least squares support vector machine classifiers
    • Gestel TV, Suykens JAK, Baesens B et al. Benchmarking least squares support vector machine classifiers. Mach. Learn. 54(1), 5-32 (2004).
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 5-32
    • Gestel, T.V.1    Jak, S.2    Baesens, B.3
  • 39
    • 44649148478 scopus 로고    scopus 로고
    • MiRTif: A support vector machine-based microRNA target interaction filter
    • Yang Y, Wang YP, Li KB. MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinformatics 9, S4 (2008).
    • (2008) BMC Bioinformatics , vol.9
    • Yang, Y.1    Wang, Y.P.2    Li, K.B.3
  • 43
    • 2342446592 scopus 로고    scopus 로고
    • Receiver Operating Characteristic (ROC) curve practical review for radiologists
    • Park SH, Goo JM, Jo CH. Receiver Operating Characteristic (ROC) curve practical review for radiologists. Korean J. Radiol. 5, 11-18 (2004).
    • (2004) Korean J. Radiol. , vol.5 , pp. 11-18
    • Park, S.H.1    Goo, J.M.2    Jo, C.H.3
  • 44
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: The next paradigm in drug discovery
    • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682-690 (2008).
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 682-690
    • Hopkins, A.L.1
  • 45
    • 77952627289 scopus 로고    scopus 로고
    • Drug-target networks
    • Vogt I, Mestres J. Drug-target networks. Mol. Inform. 29, 10-14 (2010).
    • (2010) Mol. Inform. , vol.29 , pp. 10-14
    • Vogt, I.1    Mestres, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.