-
1
-
-
84864323002
-
Stem Cell and Biomaterials Research in Dental Tissue Engineering and Regeneration
-
Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem Cell and Biomaterials Research in Dental Tissue Engineering and Regeneration. Dent Clin North Am. 2012; 56 (3): 495-520.
-
(2012)
Dent Clin North Am.
, vol.56
, Issue.3
, pp. 495-520
-
-
Horst, O.V.1
Chavez, M.G.2
Jheon, A.H.3
Desai, T.4
Klein, O.D.5
-
2
-
-
77956009862
-
Regeneration of Dental-Pulp-like Tissue by Chemotaxis-Induced Cell Homing
-
Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ. Regeneration of Dental-Pulp-like Tissue by Chemotaxis-Induced Cell Homing. Tissue Eng Part A. 2010; 16: 3023-31.
-
(2010)
Tissue Eng Part A.
, vol.16
, pp. 3023-3031
-
-
Kim, J.Y.1
Xin, X.2
Moioli, E.K.3
Chung, J.4
Lee, C.H.5
Chen, M.6
Fu, S.Y.7
Koch, P.D.8
Mao, J.J.9
-
3
-
-
52049107379
-
Bioengineered dental tissues grown in the rat jaw
-
Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res. 2008; 87: 745-50.
-
(2008)
J Dent Res.
, vol.87
, pp. 745-750
-
-
Duailibi, S.E.1
Duailibi, M.T.2
Zhang, W.3
Asrican, R.4
Vacanti, J.P.5
Yelick, P.C.6
-
4
-
-
84888405143
-
Injectable, biodegradable hydrogels for tissue engineering applications
-
Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials. 2010; 3: 1746-67.
-
(2010)
Materials.
, vol.3
, pp. 1746-1767
-
-
Tan, H.1
Marra, K.G.2
-
5
-
-
33947254962
-
Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan gels for adipose tissue engineering
-
Wu X, Black L, Santacana-Laffitte G, Patrick CW Jr. Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan gels for adipose tissue engineering. J Biomed Mater Res A. 2007; 81: 59-65.
-
(2007)
J Biomed Mater Res A.
, vol.81
, pp. 59-65
-
-
Wu, X.1
Black, L.2
Santacana-Laffitte, G.3
Patrick Jr., C.W.4
-
6
-
-
33847383275
-
Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering
-
Wahl DA, Sachlos E, Liu C, Czernuszka JT. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2007; 18: 201-9.
-
(2007)
J Mater Sci Mater Med.
, vol.18
, pp. 201-209
-
-
Wahl, D.A.1
Sachlos, E.2
Liu, C.3
Czernuszka, J.T.4
-
7
-
-
40849087911
-
In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice
-
Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, John AS, George A. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod. 2008; 34: 421-26.
-
(2008)
J Endod.
, vol.34
, pp. 421-426
-
-
Prescott, R.S.1
Alsanea, R.2
Fayad, M.I.3
Johnson, B.R.4
Wenckus, C.S.5
Hao, J.6
John, A.S.7
George, A.8
-
8
-
-
0028676236
-
Induction of dentin in amputated pulp of the dogs by recombinant human bone morphogenic proteins-2 and-4 with collagen matrix
-
Nakashima M. Induction of dentin in amputated pulp of the dogs by recombinant human bone morphogenic proteins-2 and-4 with collagen matrix. Archs Oral Biol. 1994; 39: 1085-9.
-
(1994)
Archs Oral Biol.
, vol.39
, pp. 1085-1089
-
-
Nakashima, M.1
-
9
-
-
14944374693
-
Effects of TGF-betas on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro
-
Chan C, Lan W, Chang M, Chen Y, Lan W, Chang H. Effects of TGF-betas on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol. 2005; 50: 469-79.
-
(2005)
Arch Oral Biol.
, vol.50
, pp. 469-479
-
-
Chan, C.1
Lan, W.2
Chang, M.3
Chen, Y.4
Lan, W.5
Chang, H.6
-
10
-
-
0035066222
-
Fibrin gel-advantages of a new scaffold in cardiovascular tissue engineering
-
Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M. Fibrin gel-advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2001; 19: 424-30.
-
(2001)
Eur J Cardiothorac Surg.
, vol.19
, pp. 424-430
-
-
Jockenhoevel, S.1
Zund, G.2
Hoerstrup, S.P.3
Chalabi, K.4
Sachweh, J.S.5
Demircan, L.6
Messmer, B.J.7
Turina, M.8
-
11
-
-
84872068517
-
Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering
-
Lee F, Kurisawa M. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater. 2013; 9: 5143-52.
-
(2013)
Acta Biomater.
, vol.9
, pp. 5143-5152
-
-
Lee, F.1
Kurisawa, M.2
-
12
-
-
35148867435
-
A fibrinogen based precision microporous scaffold for tissue engineering
-
Linnes MP, Ratner BD, Giachelli CM. A fibrinogen based precision microporous scaffold for tissue engineering. Biomaterials. 2007; 28: 5298-306.
-
(2007)
Biomaterials.
, vol.28
, pp. 5298-5306
-
-
Linnes, M.P.1
Ratner, B.D.2
Giachelli, C.M.3
-
13
-
-
0028929288
-
Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta
-
Clark RA, Nielsen LD, Welch MP, McPherson JM. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J Cell Sci. 1995; 108 (Pt 3): 1251-61.
-
(1995)
J Cell Sci.
, vol.108
, Issue.PART 3
, pp. 1251-1261
-
-
Clark, R.A.1
Nielsen, L.D.2
Welch, M.P.3
McPherson, J.M.4
-
14
-
-
2342623399
-
Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth
-
Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res. 2004; 94: 1124-32.
-
(2004)
Circ Res.
, vol.94
, pp. 1124-1132
-
-
Ehrbar, M.1
Djonov, V.G.2
Schnell, C.3
Tschanz, S.A.4
Martiny-Baron, G.5
Schenk, U.6
Wood, J.7
Burri, P.H.8
Hubbell, J.A.9
Zisch, A.H.10
-
15
-
-
84868203331
-
Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration
-
Yang KC, Wang CH, Chang HH, Chan WP, Chi CH, Kuo TF. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med. 2012; 6: 777-85.
-
(2012)
J Tissue Eng Regen Med.
, vol.6
, pp. 777-785
-
-
Yang, K.C.1
Wang, C.H.2
Chang, H.H.3
Chan, W.P.4
Chi, C.H.5
Kuo, T.F.6
-
16
-
-
34249898906
-
Synthesis and characterization of both ionically and enzymatically cross-linkable alginate
-
Sakai S, Kawakami K. Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater. 2007; 3: 495-501.
-
(2007)
Acta Biomater.
, vol.3
, pp. 495-501
-
-
Sakai, S.1
Kawakami, K.2
-
17
-
-
0035996537
-
Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro
-
Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res. 2002; 43: 387-90.
-
(2002)
Connect Tissue Res.
, vol.43
, pp. 387-390
-
-
Dobie, K.1
Smith, G.2
Sloan, A.J.3
Smith, A.J.4
-
18
-
-
80054769541
-
Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration
-
Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R. Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydrate Polymers. 2012; 87: 274-83.
-
(2012)
Carbohydrate Polymers.
, vol.87
, pp. 274-283
-
-
Srinivasan, S.1
Jayasree, R.2
Chennazhi, K.P.3
Nair, S.V.4
Jayakumar, R.5
-
19
-
-
79960084720
-
Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels
-
Ouasti S, Donno R, Cellesi F, Sherratt MJ, Terenghi G, Tirelli N. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels. Biomaterials. 2011; 32: 6456-70.
-
(2011)
Biomaterials.
, vol.32
, pp. 6456-6470
-
-
Ouasti, S.1
Donno, R.2
Cellesi, F.3
Sherratt, M.J.4
Terenghi, G.5
Tirelli, N.6
-
20
-
-
84873715595
-
Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles
-
Ganesh N, Hanna C, Nair SV, Nair LS. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles. Int J Biol Macromol. 2013; 55: 289-94.
-
(2013)
Int J Biol Macromol.
, vol.55
, pp. 289-294
-
-
Ganesh, N.1
Hanna, C.2
Nair, S.V.3
Nair, L.S.4
-
21
-
-
0037333678
-
Photopolymerized hyaluronic acid based hydrogels and interpenetrating networks
-
Park YD, Tirelli N, Hubbell JA. Photopolymerized hyaluronic acid based hydrogels and interpenetrating networks. Biomaterials. 2003; 24: 893-900.
-
(2003)
Biomaterials.
, vol.24
, pp. 893-900
-
-
Park, Y.D.1
Tirelli, N.2
Hubbell, J.A.3
-
22
-
-
74749108297
-
Effects of hyaluronic acid sponge as a scaffold on odotoblastic cell line and amputated dental pulp
-
Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, Matsuo K, Chen KK, Terashita M. Effects of hyaluronic acid sponge as a scaffold on odotoblastic cell line and amputated dental pulp. J Biomed Mater Res B. Appl Biomater. 2010; 92: 120-8.
-
(2010)
J Biomed Mater Res B. Appl Biomater.
, vol.92
, pp. 120-128
-
-
Inuyama, Y.1
Kitamura, C.2
Nishihara, T.3
Morotomi, T.4
Nagayoshi, M.5
Tabata, Y.6
Matsuo, K.7
Chen, K.K.8
Terashita, M.9
-
23
-
-
0036342297
-
Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering
-
Burdick J, Ansetn K. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002; 23: 4315-23.
-
(2002)
Biomaterials.
, vol.23
, pp. 4315-4323
-
-
Burdick, J.1
Ansetn, K.2
-
24
-
-
77951089569
-
Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering
-
Zhu J. Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010; 31: 4639-56.
-
(2010)
Biomaterials.
, vol.31
, pp. 4639-4656
-
-
Zhu, J.1
-
25
-
-
78650901996
-
Injectable and photopolymerizable tissue engineered auricular cartilage using PEGDM copolymer hydrogels
-
Papadopoulos A, Bichara DA, Zhao X, Ibusuki S, Randolph MA, Anseth KS, Yaremchuk MJ. Injectable and photopolymerizable tissue engineered auricular cartilage using PEGDM copolymer hydrogels. Tissue Eng Part A. 2011; 17: 161-9.
-
(2011)
Tissue Eng Part A.
, vol.17
, pp. 161-169
-
-
Papadopoulos, A.1
Bichara, D.A.2
Zhao, X.3
Ibusuki, S.4
Randolph, M.A.5
Anseth, K.S.6
Yaremchuk, M.J.7
-
26
-
-
0035912993
-
Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels
-
Mason MN, Metters AT, Bowman CN, Anseth KS. Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules. 2001; 34: 4630-35.
-
(2001)
Macromolecules.
, vol.34
, pp. 4630-4635
-
-
Mason, M.N.1
Metters, A.T.2
Bowman, C.N.3
Anseth, K.S.4
-
27
-
-
0032439635
-
The effect of an increase in chain length on the mechanical properties of polyethylene glycols
-
Al Nasassrah MA, Podczeck F, Newton JM. The effect of an increase in chain length on the mechanical properties of polyethylene glycols. Eur J Pharm Biopharm. 1998; 46: 31-38.
-
(1998)
Eur J Pharm Biopharm.
, vol.46
, pp. 31-38
-
-
Al Nasassrah, M.A.1
Podczeck, F.2
Newton, J.M.3
-
28
-
-
84871319571
-
Fibrin-loaded porous poly (ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation
-
Jiang B, Waller TM, Larson JC, Appel AA, Brey EM. Fibrin-loaded porous poly (ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng Part A. 2013; 19: 224-34.
-
(2013)
Tissue Eng Part A.
, vol.19
, pp. 224-234
-
-
Jiang, B.1
Waller, T.M.2
Larson, J.C.3
Appel, A.A.4
Brey, E.M.5
-
29
-
-
67650838489
-
Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: A pilot study
-
Boynuegri D, Ozcan G, Senel S, Uç D, Uraz A, Ogüs E, Cakilci B, Karaduman B. Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater. 2009; 90: 461-6.
-
(2009)
J Biomed Mater Res B Appl Biomater.
, vol.90
, pp. 461-466
-
-
Boynuegri, D.1
Ozcan, G.2
Senel, S.3
Uç, D.4
Uraz, A.5
Ogüs, E.6
Cakilci, B.7
Karaduman, B.8
-
30
-
-
84875649250
-
In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering
-
doi: 10. 1088/1748-6041/8/2/025002
-
Tanase CE, Sartoris A, Popa MI, Verestiuc L, Unger RE, Kirkpatrick CJ. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater. 2013; 8: 025002. doi: 10. 1088/1748-6041/8/2/025002.
-
(2013)
Biomed Mater.
, vol.8
, pp. 025002
-
-
Tanase, C.E.1
Sartoris, A.2
Popa, M.I.3
Verestiuc, L.4
Unger, R.E.5
Kirkpatrick, C.J.6
-
31
-
-
79955661845
-
Human dental pulp progenitor cell behavior on aqueous and hexafluoroisopropanol (HFIP) based silk scaffolds
-
Zhang W, Ahluwalia IP, Literman R, Kaplan DL, Yelick PC. Human dental pulp progenitor cell behavior on aqueous and hexafluoroisopropanol (HFIP) based silk scaffolds. J Biomed Mater Res A. 2011; 97: 414-22.
-
(2011)
J Biomed Mater Res A.
, vol.97
, pp. 414-422
-
-
Zhang, W.1
Ahluwalia, I.P.2
Literman, R.3
Kaplan, D.L.4
Yelick, P.C.5
-
32
-
-
84861203750
-
High-strength silk protein scaffolds for bone repair
-
Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL. High-strength silk protein scaffolds for bone repair. PNAS. 2012; 109: 7699-704.
-
(2012)
PNAS.
, vol.109
, pp. 7699-7704
-
-
Mandal, B.B.1
Grinberg, A.2
Gil, E.S.3
Panilaitis, B.4
Kaplan, D.L.5
-
34
-
-
77952010057
-
Differential effect of scaffold shape on dentin regeneration
-
Tonomura A, Mizuno D, Hisada A, Kuno N, Ando Y, Sumita Y, Honda MJ, Satomura K, Sakurai H, Ueda M, Kagami H. Differential effect of scaffold shape on dentin regeneration. Ann Biomed Eng. 2010; 38: 1664-71.
-
(2010)
Ann Biomed Eng.
, vol.38
, pp. 1664-1671
-
-
Tonomura, A.1
Mizuno, D.2
Hisada, A.3
Kuno, N.4
Ando, Y.5
Sumita, Y.6
Honda, M.J.7
Satomura, K.8
Sakurai, H.9
Ueda, M.10
Kagami, H.11
-
35
-
-
1642579663
-
Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency
-
Jeong JH, Kim SW, Park TG. Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency. Pharm Res. 2004; 21: 50-4.
-
(2004)
Pharm Res.
, vol.21
, pp. 50-54
-
-
Jeong, J.H.1
Kim, S.W.2
Park, T.G.3
-
36
-
-
84890186249
-
Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules
-
Article ID 812547, doi: 10. 4061/2011/812547
-
Nam S, Won JE, Kim CH, Kim HW. Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. J Tissue. Eng. Vol 2011, Article ID 812547, 10 pages, doi: 10. 4061/2011/812547.
-
J Tissue. Eng.
, vol.2011
, pp. 10
-
-
Nam, S.1
Won, J.E.2
Kim, C.H.3
Kim, H.W.4
-
37
-
-
84855815432
-
Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds
-
Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012; 28: 113-22.
-
(2012)
Dent Mater.
, vol.28
, pp. 113-122
-
-
Fielding, G.A.1
Bandyopadhyay, A.2
Bose, S.3
-
38
-
-
0037732936
-
Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio
-
Li SH, de Wijn JR, Li JP, Layrolle P, de Groot KD. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Engineering. 2003; 9: 535-48.
-
(2003)
Tissue Engineering.
, vol.9
, pp. 535-548
-
-
Li, S.H.1
de Wijn, J.R.2
Li, J.P.3
Layrolle, P.4
de Groot, K.D.5
-
39
-
-
81555206670
-
Magnesium based sol-gel derived bioactive glass ceramics for dental tissue regeneration
-
Goudouri OM, Theodosoglou E, Theocharidou A, Kontonasaki E, Papadopoulou L, Chatzistavrou X, Koidis P, Paraskevopoulos KM. Magnesium based sol-gel derived bioactive glass ceramics for dental tissue regeneration. Key Engineering Materials. 2012; 493/494: 884-89.
-
(2012)
Key Engineering Materials.
, vol.493-494
, pp. 884-889
-
-
Goudouri, O.M.1
Theodosoglou, E.2
Theocharidou, A.3
Kontonasaki, E.4
Papadopoulou, L.5
Chatzistavrou, X.6
Koidis, P.7
Paraskevopoulos, K.M.8
-
40
-
-
84857062246
-
Differentiation of human mesenchymal stem cells on niobium-doped fluorapatite glass-ceramics
-
Kushwaha M, Pan X, Holloway JA, Denry IL. Differentiation of human mesenchymal stem cells on niobium-doped fluorapatite glass-ceramics. Dental Materials. 2012; 28: 252-60.
-
(2012)
Dental Materials.
, vol.28
, pp. 252-260
-
-
Kushwaha, M.1
Pan, X.2
Holloway, J.A.3
Denry, I.L.4
-
41
-
-
0346753800
-
In vitro evaluation of novel bioactive composites based on bioglass-filled polylactide foams for bone tissue engineering scaffolds
-
Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR. In vitro evaluation of novel bioactive composites based on bioglass-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res A. 2003; 67: 1401-11.
-
(2003)
J Biomed Mater Res A.
, vol.67
, pp. 1401-1411
-
-
Blaker, J.J.1
Gough, J.E.2
Maquet, V.3
Notingher, I.4
Boccaccini, A.R.5
-
42
-
-
79960834400
-
The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells
-
Zheng L, Yang F, Shen H, Hua X, Mochizuki C, Sato M, Wang S, Zhang Y. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials. 2011; 32: 7053-59.
-
(2011)
Biomaterials.
, vol.32
, pp. 7053-7059
-
-
Zheng, L.1
Yang, F.2
Shen, H.3
Hua, X.4
Mochizuki, C.5
Sato, M.6
Wang, S.7
Zhang, Y.8
-
43
-
-
84867882487
-
Porous zirconia/hydroxyapatite scaffolds for bone reconstruction
-
An SH, Matsumoto T, Miyajima H, Nakahira A, Kim KH, Imazato S. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dent Mater. 2012; 28: 1221-31.
-
(2012)
Dent Mater.
, vol.28
, pp. 1221-1231
-
-
An, S.H.1
Matsumoto, T.2
Miyajima, H.3
Nakahira, A.4
Kim, K.H.5
Imazato, S.6
-
44
-
-
2442646493
-
Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ε-caprolactone in the presence of poly (ethylene glycol)
-
Huang MH, Li S, Hutmacher DW, Schantz JT, Vacanti CA, Braud C, Vert M. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ε-caprolactone in the presence of poly (ethylene glycol). J Biomed Mater Res A. 2004; 69: 417-27.
-
(2004)
J Biomed Mater Res A.
, vol.69
, pp. 417-427
-
-
Huang, M.H.1
Li, S.2
Hutmacher, D.W.3
Schantz, J.T.4
Vacanti, C.A.5
Braud, C.6
Vert, M.7
-
45
-
-
49449110772
-
Functionally Graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications
-
Erisken C, Kalyon DM, Wang H. Functionally Graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials. 2008; 29: 4065-73.
-
(2008)
Biomaterials.
, vol.29
, pp. 4065-4073
-
-
Erisken, C.1
Kalyon, D.M.2
Wang, H.3
-
46
-
-
25444519999
-
Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering
-
Venugopal J, Zhang YZ, Ramakrishna S. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology. 2005; 16: 2138-42.
-
(2005)
Nanotechnology.
, vol.16
, pp. 2138-2142
-
-
Venugopal, J.1
Zhang, Y.Z.2
Ramakrishna, S.3
-
47
-
-
77953808787
-
Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces
-
Park CH, Rios HF, Jin Q, Bland ME, Flanagan CL, Hollister SJ, Giannobile WV. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials. 2010; 31: 5945-52.
-
(2010)
Biomaterials.
, vol.31
, pp. 5945-5952
-
-
Park, C.H.1
Rios, H.F.2
Jin, Q.3
Bland, M.E.4
Flanagan, C.L.5
Hollister, S.J.6
Giannobile, W.V.7
-
48
-
-
84873318167
-
Scaffold technologies for controlling cell behavior in tissue engineering
-
doi: 10. 1088/1748-6041/8/1/010201
-
Lee SJ, Atala A. Scaffold technologies for controlling cell behavior in tissue engineering. Biomed Mater. 2013; 8 (1): 010201. doi: 10. 1088/1748-6041/8/1/010201.
-
(2013)
Biomed Mater.
, vol.8
, Issue.1
, pp. 010201
-
-
Lee, S.J.1
Atala, A.2
-
49
-
-
34249978726
-
Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering
-
Moioli EK, Clark PA, Xin X, Lal S, Mao JJ. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Advanced Drug Delivery Reviews. 2007; 59: 308-324.
-
(2007)
Advanced Drug Delivery Reviews.
, vol.59
, pp. 308-324
-
-
Moioli, E.K.1
Clark, P.A.2
Xin, X.3
Lal, S.4
Mao, J.J.5
-
50
-
-
84873155914
-
Current approaches to electrospun nanofibers for tissue engineering
-
doi: 10. 1088/1748-6041/8/1/014102
-
Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater. 2013; 8 (1): 014102. doi: 10. 1088/1748-6041/8/1/014102.
-
(2013)
Biomed Mater.
, vol.8
, Issue.1
, pp. 014102
-
-
Rim, N.G.1
Shin, C.S.2
Shin, H.3
-
51
-
-
58749110178
-
Ability of nanocrystalline hydroxyapatite to promote human periodontal ligament cell proliferation
-
Kasaj A, Willershausen B, Reichert C, Rohrig B, Smeets R, Schmidt M. Ability of nanocrystalline hydroxyapatite to promote human periodontal ligament cell proliferation. Journal of oral sciences. 2008; 50: 279-85.
-
(2008)
Journal of oral sciences.
, vol.50
, pp. 279-285
-
-
Kasaj, A.1
Willershausen, B.2
Reichert, C.3
Rohrig, B.4
Smeets, R.5
Schmidt, M.6
-
52
-
-
56749171079
-
Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration
-
Huang Z, Sargeant TD, Hulvat JF, Mata A, Bringas P Jr, Koh CY, Stupp SI, Snead ML. Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. J Bone Miner Res. 2008; 23: 1995-2006.
-
(2008)
J Bone Miner Res.
, vol.23
, pp. 1995-2006
-
-
Huang, Z.1
Sargeant, T.D.2
Hulvat, J.F.3
Mata, A.4
Bringas Jr., P.5
Koh, C.Y.6
Stupp, S.I.7
Snead, M.L.8
-
54
-
-
33749015187
-
Temporally regulated delivery of VEGF in vitro and in vivo
-
Ennett AB, Kaigler D, Mooney DJ. Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res A. 2006; 79: 176-84.
-
(2006)
J Biomed Mater Res A.
, vol.79
, pp. 176-184
-
-
Ennett, A.B.1
Kaigler, D.2
Mooney, D.J.3
-
55
-
-
0347088946
-
Smart nanotubes for biomedical and biotechnological applications
-
Kohli P, Martin C. Smart nanotubes for biomedical and biotechnological applications. Drug News Perspect. 2003; 16: 566-73.
-
(2003)
Drug News Perspect.
, vol.16
, pp. 566-573
-
-
Kohli, P.1
Martin, C.2
|