-
1
-
-
46749153312
-
Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study
-
Poland C.A., et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3:423-428.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 423-428
-
-
Poland, C.A.1
-
2
-
-
43749086243
-
Hype around nanotubes creates unrealistic hopes
-
Kostarelos K., et al. Hype around nanotubes creates unrealistic hopes. Nature 2008, 453:280.
-
(2008)
Nature
, vol.453
, pp. 280
-
-
Kostarelos, K.1
-
3
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354:56-58.
-
(1991)
Nature
, vol.354
, pp. 56-58
-
-
Iijima, S.1
-
4
-
-
0037264039
-
The emerging field of nanotube biotechnology
-
Martin C.R., Kohli P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2:29-37.
-
(2003)
Nat. Rev. Drug Discov.
, vol.2
, pp. 29-37
-
-
Martin, C.R.1
Kohli, P.2
-
5
-
-
41449092971
-
Opportunities and challenges of carbon-based nanomaterials for cancer therapy
-
Bianco A., et al. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin. Drug Deliv. 2008, 5:331-342.
-
(2008)
Expert Opin. Drug Deliv.
, vol.5
, pp. 331-342
-
-
Bianco, A.1
-
6
-
-
77953669532
-
Maximizing safe design of engineered nanomaterials: the NIH and NIEHS research perspective
-
Tinkle S.S. Maximizing safe design of engineered nanomaterials: the NIH and NIEHS research perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2:88-98.
-
(2010)
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
, vol.2
, pp. 88-98
-
-
Tinkle, S.S.1
-
7
-
-
1842426001
-
Understanding nature's design for a nanosyringe
-
Lopez C.F., et al. Understanding nature's design for a nanosyringe. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:4431-4434.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 4431-4434
-
-
Lopez, C.F.1
-
8
-
-
53149095854
-
Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli
-
Fadel T.R., et al. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 2008, 8:2070-2076.
-
(2008)
Nano Lett.
, vol.8
, pp. 2070-2076
-
-
Fadel, T.R.1
-
9
-
-
84890335187
-
Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale
-
Aldinucci A., et al. Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale. Nano Lett. 2013, 13:6098-6105.
-
(2013)
Nano Lett.
, vol.13
, pp. 6098-6105
-
-
Aldinucci, A.1
-
10
-
-
34547690726
-
Immunological properties of engineered nanomaterials
-
Dobrovolskaia M.A., McNeil S.E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2:469-478.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 469-478
-
-
Dobrovolskaia, M.A.1
McNeil, S.E.2
-
11
-
-
33645354328
-
Chemistry of carbon nanotubes
-
Tasis D., et al. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106:1105-1136.
-
(2006)
Chem. Rev.
, vol.106
, pp. 1105-1136
-
-
Tasis, D.1
-
12
-
-
21444447315
-
Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing
-
Cai D., et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2005, 2:449-454.
-
(2005)
Nat. Methods
, vol.2
, pp. 449-454
-
-
Cai, D.1
-
13
-
-
80755153755
-
Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation
-
Shi X., et al. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 2011, 6:714-719.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 714-719
-
-
Shi, X.1
-
14
-
-
84874690008
-
Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation
-
Fadel T.R., et al. Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation. Small 2013, 9:666-672.
-
(2013)
Small
, vol.9
, pp. 666-672
-
-
Fadel, T.R.1
-
15
-
-
80054722093
-
Binding of blood proteins to carbon nanotubes reduces cytotoxicity
-
Ge C., et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16968-16973.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16968-16973
-
-
Ge, C.1
-
17
-
-
0037350545
-
Immunotherapy: past, present and future
-
Waldmann T.A. Immunotherapy: past, present and future. Nat. Med. 2003, 9:269-277.
-
(2003)
Nat. Med.
, vol.9
, pp. 269-277
-
-
Waldmann, T.A.1
-
18
-
-
84865317394
-
Engineering approaches to immunotherapy
-
148rv9
-
Swartz M.A., et al. Engineering approaches to immunotherapy. Sci. Transl. Med. 2012, 4:148rv9.
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Swartz, M.A.1
-
19
-
-
79956114010
-
Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines
-
Demento S.L., et al. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol. 2011, 29:294-306.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 294-306
-
-
Demento, S.L.1
-
20
-
-
0142229613
-
Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses
-
Pantarotto D., et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 2003, 10:961-966.
-
(2003)
Chem. Biol.
, vol.10
, pp. 961-966
-
-
Pantarotto, D.1
-
21
-
-
52649154711
-
Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy
-
Meng J., et al. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 2008, 4:1364-1370.
-
(2008)
Small
, vol.4
, pp. 1364-1370
-
-
Meng, J.1
-
22
-
-
0036919989
-
Chemistry of single-walled carbon nanotubes
-
Niyogi S., et al. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35:1105-1113.
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 1105-1113
-
-
Niyogi, S.1
-
23
-
-
13144266761
-
Covalent surface chemistry of single-walled carbon nanotubes
-
Banerjee S., et al. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17:17-29.
-
(2005)
Adv. Mater.
, vol.17
, pp. 17-29
-
-
Banerjee, S.1
-
24
-
-
58649105112
-
Advances in bioapplications of carbon nanotubes
-
Lu F.S., et al. Advances in bioapplications of carbon nanotubes. Adv. Mater. 2009, 21:139-152.
-
(2009)
Adv. Mater.
, vol.21
, pp. 139-152
-
-
Lu, F.S.1
-
25
-
-
70350662339
-
Promises, facts and challenges for carbon nanotubes in imaging and therapeutics
-
Kostarelos K., et al. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 2009, 4:627-633.
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 627-633
-
-
Kostarelos, K.1
-
26
-
-
33846845060
-
In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice
-
Liu Z., et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2:47-52.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 47-52
-
-
Liu, Z.1
-
27
-
-
51349160000
-
Carbon nanotubes as photoacoustic molecular imaging agents in living mice
-
De La Zerda A., et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3:557-562.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 557-562
-
-
De La Zerda, A.1
-
28
-
-
55749088033
-
Protein microarrays with carbon nanotubes as multicolor Raman labels
-
Chen Z., et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 2008, 26:1285-1292.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 1285-1292
-
-
Chen, Z.1
-
29
-
-
0036919937
-
Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions
-
Khabashesku V.N., et al. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc. Chem. Res. 2002, 35:1087-1095.
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 1087-1095
-
-
Khabashesku, V.N.1
-
30
-
-
0141516670
-
Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines
-
Stevens J.L., et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett. 2003, 3:331-336.
-
(2003)
Nano Lett.
, vol.3
, pp. 331-336
-
-
Stevens, J.L.1
-
31
-
-
0036402018
-
Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition
-
Tagmatarchis N., et al. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem. Commun. 2002, 2010-2011.
-
(2002)
Chem. Commun.
, pp. 2010-2011
-
-
Tagmatarchis, N.1
-
32
-
-
0037028542
-
Organic functionalization of carbon nanotubes
-
Georgakilas V., et al. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 2002, 124:760-761.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 760-761
-
-
Georgakilas, V.1
-
33
-
-
0036928869
-
Amino acid functionalisation of water soluble carbon nanotubes
-
Georgakilas V., et al. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 2002, 3050-3051.
-
(2002)
Chem. Commun.
, pp. 3050-3051
-
-
Georgakilas, V.1
-
34
-
-
0029277835
-
Opening and purification of carbon nanotubes in high yields
-
Hiura H., et al. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 1995, 7:275-276.
-
(1995)
Adv. Mater.
, vol.7
, pp. 275-276
-
-
Hiura, H.1
-
35
-
-
50149110878
-
The effect of particle design on cellular internalization pathways
-
Gratton S.E.A., et al. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:11613-11618.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 11613-11618
-
-
Gratton, S.E.A.1
-
36
-
-
33846929427
-
Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type
-
Kostarelos K., et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, 2:108-113.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 108-113
-
-
Kostarelos, K.1
-
37
-
-
84867569548
-
Intracerebral CpG immunotherapy with carbon nanotubes abrogates growth of subcutaneous melanomas in mice
-
Fan H.T., et al. Intracerebral CpG immunotherapy with carbon nanotubes abrogates growth of subcutaneous melanomas in mice. Clin. Cancer Res. 2012, 18:5628-5638.
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 5628-5638
-
-
Fan, H.T.1
-
38
-
-
11844272056
-
Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties
-
Bianco A., et al. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 2005, 127:58-59.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 58-59
-
-
Bianco, A.1
-
39
-
-
84858758766
-
Adoptive immunotherapy for cancer: harnessing the T cell response
-
Restifo N.P., et al. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 2012, 12:269-281.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 269-281
-
-
Restifo, N.P.1
-
40
-
-
67649289946
-
Antigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapy
-
Steenblock E.R., et al. Antigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapy. Expert Opin. Biol. Ther. 2009, 9:451-464.
-
(2009)
Expert Opin. Biol. Ther.
, vol.9
, pp. 451-464
-
-
Steenblock, E.R.1
-
41
-
-
77950961733
-
Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation
-
Fadel T.R., et al. Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation. Langmuir 2010, 26:5645-5654.
-
(2010)
Langmuir
, vol.26
, pp. 5645-5654
-
-
Fadel, T.R.1
-
42
-
-
65649151375
-
Effects of nanomaterial physicochemical properties on in vivo toxicity
-
Aillon K.L., et al. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 2009, 61:457-466.
-
(2009)
Adv. Drug Deliv. Rev.
, vol.61
, pp. 457-466
-
-
Aillon, K.L.1
-
43
-
-
0034692121
-
Immunocompatibility and biocompatibility of cell delivery systems
-
Rihova B. Immunocompatibility and biocompatibility of cell delivery systems. Adv. Drug Deliv. Rev. 2000, 42:65-80.
-
(2000)
Adv. Drug Deliv. Rev.
, vol.42
, pp. 65-80
-
-
Rihova, B.1
-
44
-
-
80052141850
-
Complement activation by carbon nanotubes
-
Rybak-Smith M.J., Sim R.B. Complement activation by carbon nanotubes. Adv. Drug Deliv. Rev. 2011, 63:1031-1041.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 1031-1041
-
-
Rybak-Smith, M.J.1
Sim, R.B.2
-
45
-
-
84888873074
-
When carbon nanotubes encounter the immune system: desirable and undesirable effects
-
Dumortier H. When carbon nanotubes encounter the immune system: desirable and undesirable effects. Adv. Drug Deliv. Rev. 2013, 65:2120-2126.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 2120-2126
-
-
Dumortier, H.1
-
46
-
-
25644454502
-
Complement activation and protein adsorption by carbon nanotubes
-
Salvador-Morales C., et al. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 2006, 43:193-201.
-
(2006)
Mol. Immunol.
, vol.43
, pp. 193-201
-
-
Salvador-Morales, C.1
-
47
-
-
48049083322
-
Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover
-
Hamad I., et al. Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol. 2008, 45:3797-3803.
-
(2008)
Mol. Immunol.
, vol.45
, pp. 3797-3803
-
-
Hamad, I.1
-
48
-
-
33746915096
-
Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells (vol 6, pg 1522, 2006)
-
Dumortier H., et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells (vol 6, pg 1522, 2006). Nano Lett. 2006, 6:1522-1528.
-
(2006)
Nano Lett.
, vol.6
, pp. 1522-1528
-
-
Dumortier, H.1
-
49
-
-
67651205774
-
Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells
-
Porter A.E., et al. Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 2009, 3:1485-1492.
-
(2009)
ACS Nano
, vol.3
, pp. 1485-1492
-
-
Porter, A.E.1
-
50
-
-
33744971400
-
Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron
-
Kagan V.E., et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 2006, 165:88-100.
-
(2006)
Toxicol. Lett.
, vol.165
, pp. 88-100
-
-
Kagan, V.E.1
-
51
-
-
84857588567
-
Ex vivo impact of functionalized carbon nanotubes on human immune cells
-
Delogu L.G., et al. Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine (Lond.) 2012, 7:231-243.
-
(2012)
Nanomedicine (Lond.)
, vol.7
, pp. 231-243
-
-
Delogu, L.G.1
-
52
-
-
34447555613
-
An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis
-
Brown D.M., et al. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 2007, 45:1743-1756.
-
(2007)
Carbon
, vol.45
, pp. 1743-1756
-
-
Brown, D.M.1
-
53
-
-
52049100604
-
Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice
-
Yang S.T., et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 2008, 181:182-189.
-
(2008)
Toxicol. Lett.
, vol.181
, pp. 182-189
-
-
Yang, S.T.1
-
54
-
-
84887212544
-
Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo
-
Konduru N.V., et al. Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS ONE 2009, 4:e4398.
-
(2009)
PLoS ONE
, vol.4
-
-
Konduru, N.V.1
-
55
-
-
84866388259
-
A carbon nanotube toxicity paradigm driven by mast cells and the IL-33ST2 axis
-
Katwa P., et al. A carbon nanotube toxicity paradigm driven by mast cells and the IL-33ST2 axis. Small 2012, 8:2904-2912.
-
(2012)
Small
, vol.8
, pp. 2904-2912
-
-
Katwa, P.1
-
56
-
-
80053320089
-
Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism
-
Palomaki J., et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 2011, 5:6861-6870.
-
(2011)
ACS Nano
, vol.5
, pp. 6861-6870
-
-
Palomaki, J.1
-
57
-
-
84864106367
-
Double-walled carbon nanotubes trigger IL-1 β release in human monocytes through Nlrp3 inflammasome activation
-
Meunier E., et al. Double-walled carbon nanotubes trigger IL-1 β release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine 2012, 8:987-995.
-
(2012)
Nanomedicine
, vol.8
, pp. 987-995
-
-
Meunier, E.1
-
58
-
-
60749104683
-
The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis
-
Franchi L., et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 2009, 10:241-247.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 241-247
-
-
Franchi, L.1
-
59
-
-
84878098268
-
NLRP3 inflammasome activation induced by engineered nanomaterials
-
Sun B., et al. NLRP3 inflammasome activation induced by engineered nanomaterials. Small 2012, 9:1595-1607.
-
(2012)
Small
, vol.9
, pp. 1595-1607
-
-
Sun, B.1
-
60
-
-
27644443613
-
Multi-walled carbon nanotubes induce T lymphocyte apoptosis
-
Bottini M., et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 2006, 160:121-126.
-
(2006)
Toxicol. Lett.
, vol.160
, pp. 121-126
-
-
Bottini, M.1
-
61
-
-
79961094494
-
Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure
-
Tkach A.V., et al. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 2011, 5:5755-5762.
-
(2011)
ACS Nano
, vol.5
, pp. 5755-5762
-
-
Tkach, A.V.1
-
62
-
-
84885456209
-
Interactions of polydispersed single-walled carbon nanotubes with T cells resulting in downregulation of allogeneic CTL responses in vitro and in vivo
-
Alam A., et al. Interactions of polydispersed single-walled carbon nanotubes with T cells resulting in downregulation of allogeneic CTL responses in vitro and in vivo. Nanotoxicology 2013, 7:1351-1360.
-
(2013)
Nanotoxicology
, vol.7
, pp. 1351-1360
-
-
Alam, A.1
-
63
-
-
67651227154
-
Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice
-
Mitchell L.A., et al. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 2009, 4:451-456.
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 451-456
-
-
Mitchell, L.A.1
-
64
-
-
77952289829
-
Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation
-
Kagan V.E., et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 2010, 5:354-359.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 354-359
-
-
Kagan, V.E.1
-
65
-
-
35948972832
-
Direct imaging of single-walled carbon nanotubes in cells
-
Porter A.E., et al. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2:713-717.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 713-717
-
-
Porter, A.E.1
-
66
-
-
64749096854
-
Multi-walled carbon nanotubes do not impair immune functions of dendritic cells
-
Wang J., et al. Multi-walled carbon nanotubes do not impair immune functions of dendritic cells. Carbon 2009, 47:1752-1760.
-
(2009)
Carbon
, vol.47
, pp. 1752-1760
-
-
Wang, J.1
-
67
-
-
67649491055
-
Understanding biophysicochemical interactions at the nano-bio interface
-
Nel A.E., et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8:543-557.
-
(2009)
Nat. Mater.
, vol.8
, pp. 543-557
-
-
Nel, A.E.1
-
68
-
-
71949100986
-
Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake
-
Mu Q., et al. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 2009, 9:4370-4375.
-
(2009)
Nano Lett.
, vol.9
, pp. 4370-4375
-
-
Mu, Q.1
-
69
-
-
78651096353
-
Effects of functionalization on the targeting site of carbon nanotubes inside cells
-
Porter A., et al. Effects of functionalization on the targeting site of carbon nanotubes inside cells. J. Phys.: Conf. Ser. 2010, 241. 10.1088/1742-6596/241/1/012018.
-
(2010)
J. Phys.: Conf. Ser.
, vol.241
-
-
Porter, A.1
-
70
-
-
77952411098
-
New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes
-
Zhou F., et al. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010, 10:1677-1681.
-
(2010)
Nano Lett.
, vol.10
, pp. 1677-1681
-
-
Zhou, F.1
-
71
-
-
80051769477
-
Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in different human cell types
-
Holt B.D., et al. Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in different human cell types. Small 2011, 7:2348-2355.
-
(2011)
Small
, vol.7
, pp. 2348-2355
-
-
Holt, B.D.1
-
72
-
-
0036214292
-
Antigen presentation and T cell stimulation by dendritic cells
-
Guermonprez P., et al. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 2002, 20:621-667.
-
(2002)
Annu. Rev. Immunol.
, vol.20
, pp. 621-667
-
-
Guermonprez, P.1
-
73
-
-
45749111446
-
Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants
-
Eisenbarth S.C., et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008, 453:1122-1126.
-
(2008)
Nature
, vol.453
, pp. 1122-1126
-
-
Eisenbarth, S.C.1
-
74
-
-
79961033075
-
Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens
-
Villa C.H., et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 2011, 5:5300-5311.
-
(2011)
ACS Nano
, vol.5
, pp. 5300-5311
-
-
Villa, C.H.1
-
75
-
-
79951842455
-
Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity
-
Zhao D., et al. Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin. Cancer Res. 2011, 17:771-782.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 771-782
-
-
Zhao, D.1
-
76
-
-
84879391249
-
In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes
-
Sacchetti C., et al. In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. Bioconjug. Chem. 2013, 24:852-858.
-
(2013)
Bioconjug. Chem.
, vol.24
, pp. 852-858
-
-
Sacchetti, C.1
-
77
-
-
84862815513
-
Antitumor immunologically modified carbon nanotubes for photothermal therapy
-
Zhou F., et al. Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials 2012, 33:3235-3242.
-
(2012)
Biomaterials
, vol.33
, pp. 3235-3242
-
-
Zhou, F.1
-
78
-
-
24744437125
-
Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing
-
Kam N.W., et al. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005, 127:12492-12493.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 12492-12493
-
-
Kam, N.W.1
-
79
-
-
62749152720
-
Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model
-
VanHandel M., et al. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J. Neuroimmunol. 2009, 208:3-9.
-
(2009)
J. Neuroimmunol.
, vol.208
, pp. 3-9
-
-
VanHandel, M.1
-
80
-
-
44949190343
-
Effect of single-walled carbon nanotubes on primary immune cells in vitro
-
Zhang J., et al. Effect of single-walled carbon nanotubes on primary immune cells in vitro. Front. Mater. Sci. China 2008, 2:228-232.
-
(2008)
Front. Mater. Sci. China
, vol.2
, pp. 228-232
-
-
Zhang, J.1
|