-
1
-
-
67749108622
-
Tumor clustering using non-negative matrix factorization with gene selection
-
Jul.
-
C. H. Zheng, D. S. Huang, L. Zhang, and X. Z. Kong, "Tumor clustering using non-negative matrix factorization with gene selection," IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 4, pp. 599-607, Jul. 2009.
-
(2009)
IEEE Trans. Inf. Technol. Biomed.
, vol.13
, Issue.4
, pp. 599-607
-
-
Zheng, C.H.1
Huang, D.S.2
Zhang, L.3
Kong, X.Z.4
-
2
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander, "Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring," Science, vol. 286, pp. 531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
3
-
-
4043075824
-
-
New York, NY, USA: Wiley
-
R. O. Duda, P. E. Hart, andD. G. Stork, Pattern Classification[M]. New York, NY, USA: Wiley, 2001, pp. 566-581.
-
(2001)
Pattern Classification[M]
, pp. 566-581
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
4
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
DOI 10.1073/pnas.97.1.262
-
M. Brown, W. Grundyand, D. Lin et al., "Knowledge-based analysis of microarray gene expression data by using support vectormachines," Proc. Nat. Acad. Sci. USA., vol. 97, no. 1, pp. 262-267, 2000. (Pubitemid 30055819)
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
Ares Jr., M.7
Haussler, D.8
-
5
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
G. Isabelle, W. Jason, B. Stephen, and V. Vladimir, "Gene selection for cancer classification using support vector machines," Mach. Learning, vol. 46, no. 1, pp. 389-422, 2002.
-
(2002)
Mach. Learning
, vol.46
, Issue.1
, pp. 389-422
-
-
Isabelle, G.1
Jason, W.2
Stephen, B.3
Vladimir, V.4
-
6
-
-
19344363436
-
Predictive neural networks for gene expression data analysis
-
T. Ah Hwee and P. Hong, "Predictive neural networks for gene expression data analysis," Neural Netw., vol. 18, no. 3, pp. 297-306, 2005.
-
(2005)
Neural Netw.
, vol.18
, Issue.3
, pp. 297-306
-
-
Hwee, T.A.H.1
Hong, P.2
-
7
-
-
0036139278
-
Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
-
L. Li, C. R.Weinberg, T. A. Darden, and L. G. Pedersen, "Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method," Bioinformatics, vol. 17, no. 12, pp. 1131-1142, 2001. (Pubitemid 33735339)
-
(2001)
Bioinformatics
, vol.17
, Issue.12
, pp. 1131-1142
-
-
Li, L.1
Weinberg, C.R.2
Darden, T.A.3
Pedersen, L.G.4
-
8
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
D. V. Nguyen and D. M. Rocke, "Tumor classification by partial least squares using microarray gene expression data," Bioinformatics, vol. 18, no. 1, pp. 39-50, 2002. (Pubitemid 34145030)
-
(2002)
Bioinformatics
, vol.18
, Issue.1
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
9
-
-
33747865502
-
Independent component analysis based penalized discriminant method for tumor classification using gene expression data
-
D. S. Huang and C. H. Zheng, "Independent component analysis based penalized discriminant method for tumor classification using gene expression data," Bioinformatics, vol. 22, no. 15, pp. 1855-1862, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.15
, pp. 1855-1862
-
-
Huang, D.S.1
Zheng, C.H.2
-
10
-
-
10244252786
-
Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction
-
DOI 10.1093/bioinformatics/bth383
-
N. Pochet, F. De Smet, J. A. K. Suykens, and B. L. R. DeMoor, "Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction," Bioinformatics, vol. 20, pp. 3185-3195, 2004. (Pubitemid 39619208)
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3185-3195
-
-
Pochet, N.1
De Smet, F.2
Suykens, J.A.K.3
De Moor, B.L.R.4
-
11
-
-
77957255786
-
Gene expression data classification using locally linear discriminant embedding[J]
-
B. Li, C. H. Zheng, D. S. Huang et al., "Gene expression data classification using locally linear discriminant embedding[J]," Comput. Biol. Med., vol. 40, pp. 802-810, 2010.
-
(2010)
Comput. Biol. Med.
, vol.40
, pp. 802-810
-
-
Li, B.1
Zheng, C.H.2
Huang, D.S.3
-
12
-
-
35248860116
-
Supervised locally linear embedding[C]
-
D. D. Ridder, O. Kouropteva, O. Okun et al., "Supervised locally linear embedding[C]," Lecture Notes Comput. Sci., vol. 34, no. 10, pp. 333-341, 2003.
-
(2003)
Lecture Notes Comput. Sci.
, vol.34
, Issue.10
, pp. 333-341
-
-
Ridder, D.D.1
Kouropteva, O.2
Okun, O.3
-
13
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
DOI 10.1162/089976603321780317
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
14
-
-
13444286179
-
Locality preserving projections
-
S. Thrun, K. Saul, and B. Scḧolkopf, Eds. Cambridge, MA, USA MIT Press
-
X. F. He and P. Niyogi, "Locality preserving projections," in Advances in Neural Information Processing Systems, S. Thrun, K. Saul, and B. Scḧolkopf, Eds. vol. 16, Cambridge, MA, USA, MIT Press, 2004, pp. 153-160.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 153-160
-
-
He, X.F.1
Niyogi, P.2
-
15
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
16
-
-
14544307975
-
Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
-
Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, 2004.
-
(2004)
SIAM J. Sci. Comput.
, vol.26
, Issue.1
, pp. 313-338
-
-
Zhang, Z.1
Zha, H.2
-
17
-
-
33745456231
-
-
Univ. Wisconsin-Madison, Tech. Rep. [Online]. Available
-
X. Zhu, (2008). Semi-supervised learning literature. Dept. Computer Sci., Univ. Wisconsin-Madison, Tech. Rep. 1530 [Online]. Available: http://www.cs.wisc.edu/?jerryzhu/pub/ssl-survey.pdf
-
(2008)
Semi-supervised Learning Literature. Dept. Computer Sci.
, pp. 1530
-
-
Zhu, X.1
-
18
-
-
9444294778
-
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
-
C. Sammut and A. G. Hoffmann, Eds. San Francisco, CA, USA: Morgan Kaufmann
-
D. Klein, S. D. Kamvar, and C. D. Manning, "From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering," in Proc. 19th Int'l Conf. Mach. Learning, C. Sammut and A. G. Hoffmann, Eds. San Francisco, CA, USA: Morgan Kaufmann, 2002, pp. 307-314.
-
(2002)
Proc. 19th Int'l Conf. Mach. Learning
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.D.3
-
19
-
-
57749197763
-
Semi-supervised dimensionality reduction[C]
-
D. Q. Zhang, Z. H. Zhou, and S. C. Chen, "Semi-supervised dimensionality reduction[C]," in Proc. 7th SIAM Int. Conf. Data Mining, 2007, pp. 629-634.
-
(2007)
Proc. 7th SIAM Int. Conf. Data Mining
, pp. 629-634
-
-
Zhang, D.Q.1
Zhou, Z.H.2
Chen, S.C.3
-
20
-
-
57349091730
-
Semi-supervised dimensionality reduction using pairwise equivalence constraints
-
H. Cevikalp, J. Verbeek, F. Jurie, and A. Klaser, "Semi-supervised dimensionality reduction using pairwise equivalence constraints," in Proc. 3rd Int. Conf. Comput. Vision Theory Appl., 2008.
-
(2008)
Proc. 3rd Int. Conf. Comput. Vision Theory Appl.
-
-
Cevikalp, H.1
Verbeek, J.2
Jurie, F.3
Klaser, A.4
-
21
-
-
52349092368
-
Neighbourhood preserving based semi-supervised dimensionality reduction [J]
-
J. Wei and H. Peng, "Neighbourhood preserving based semi-supervised dimensionality reduction [J]," Electron. Lett., vol. 44, no. 20, pp. 1190-1192, 2008.
-
(2008)
Electron. Lett.
, vol.44
, Issue.20
, pp. 1190-1192
-
-
Wei, J.1
Peng, H.2
-
22
-
-
33947194180
-
Graph embedding and extensions: A general framework for dimensionality reduction
-
DOI 10.1109/TPAMI.2007.250598
-
S. C. Yan, D. Xu, B. Y. Zhang, H. J. Zhang, Q. Yang, and S. Lin, "Graph embedding and extensions: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal.Mach. Intell., vol. 28, no. 1, pp. 40-51, Jan. 2007. (Pubitemid 46415944)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.-J.4
Yang, Q.5
Lin, S.6
-
24
-
-
3142725535
-
Semi-supervised learning on Riemannian manifolds
-
M. Belkin and P. Niyogi, "Semi-supervised learning on Riemannian manifolds," Mach. Learning, vol. 56, no. 1, pp. 209-239, 2004.
-
(2004)
Mach. Learning
, vol.56
, Issue.1
, pp. 209-239
-
-
Belkin, M.1
Niyogi, P.2
-
26
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data: A review," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 90-105, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
28
-
-
84862783743
-
Semi-supervised ensemble classification in subspaces
-
G. Yu, G. Zhang, and Z. Yu, "Semi-supervised ensemble classification in subspaces," Appl. Soft Comput., vol. 12, pp. 1511-1522, 2012.
-
(2012)
Appl. Soft Comput.
, vol.12
, pp. 1511-1522
-
-
Yu, G.1
Zhang, G.2
Yu, Z.3
-
30
-
-
84876113039
-
Random subspace evidence classifier
-
H. Li and G. Wen, "Random subspace evidence classifier," Nurocomputing, vol. 110, pp. 62-69, 2013.
-
(2013)
Nurocomputing
, vol.110
, pp. 62-69
-
-
Li, H.1
Wen, G.2
-
33
-
-
78049341530
-
Learn++: A random subspace approach for the missing feature problem
-
R. Polikar, J. Depasquale, H. S. Mohammed, G. Brown, and L. I. Kuncheva, "Learn++: A random subspace approach for the missing feature problem," Pattern Recog., vol. 43, no. 11, pp. 3817-3832, 2010.
-
(2010)
Pattern Recog.
, vol.43
, Issue.11
, pp. 3817-3832
-
-
Polikar, R.1
Depasquale, J.2
Mohammed, H.S.3
Brown, G.4
Kuncheva, L.I.5
|