메뉴 건너뛰기




Volumn 151 AISC, Issue , 2012, Pages 379-386

Inferring gene regulatory networks from gene expression data by a dynamic Bayesian network-based model

Author keywords

Dynamic Bayesian Network; Gene Expression Data; Gene Regulatory Networks; Inference

Indexed keywords

COMPUTATION TIME; DYNAMIC BAYESIAN NETWORKS; DYNAMIC BEHAVIORS; EXPRESSION DATA; FEED-BACK LOOP; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; GENE-GENE RELATIONSHIPS; INFERENCE; INFERENCE EFFICIENCY; MICROARRAY DATA; MISSING VALUES; NETWORK-BASED; SEARCH SPACES; TARGET GENES; YEAST CELL CYCLES;

EID: 84864303296     PISSN: 18675662     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-28765-7_45     Document Type: Conference Paper
Times cited : (12)

References (16)
  • 1
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • doi:10.1038/nrm2503
    • Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology 9(10), 770-780 (2008), doi:10.1038/nrm2503
    • (2008) Nature Reviews Molecular Cell Biology , vol.9 , Issue.10 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 2
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • doi:10.1093/bib/bbp028
    • Lee, W.P., Tzou, W.S.: Computational methods for discovering gene networks from expression data. Briefing in Bioinformatics 10(4), 408-423 (2009), doi:10.1093/bib/bbp028
    • (2009) Briefing in Bioinformatics , vol.10 , Issue.4 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 5
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • doi:10.1093/bioinformatics
    • Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d'Alche-Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl.2), 138-148 (2003), doi:10.1093/bioinformatics
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2 , pp. 138-148
    • Perrin, B.E.1    Ralaivola, L.2    Mazurie, A.3    Bottani, S.4    Mallet, J.5    D'Alche-Buc, F.6
  • 6
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • doi:10.1093/bib/4.3.228
    • Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefing in Bioinformatics 4(3), 228-235 (2003), doi:10.1093/bib/4.3.228
    • (2003) Briefing in Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 7
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • doi:10.1093/bioinformatics/bth448
    • Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594-3603 (2004), doi:10.1093/ bioinformatics/bth448
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 8
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • doi:10.1093/bioinformatics/bth463
    • Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71-79 (2005), doi:10.1093/bioinformatics/bth463
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 9
    • 77957713914 scopus 로고    scopus 로고
    • Constructing non-stationary dynamic Bayesian networks with a flexible lag choosing mechanism
    • (11) doi:10.1186/1471-2105-11-S6-S27
    • Jia, Y., Huan, J.: Constructing non-stationary dynamic Bayesian networks with a flexible lag choosing mechanism. BMC Bioinformatics (11) S27(11) (2010), doi:10.1186/1471-2105-11-S6-S27
    • (2010) BMC Bioinformatics , vol.S27 , Issue.11
    • Jia, Y.1    Huan, J.2
  • 10
    • 2342426727 scopus 로고    scopus 로고
    • Gaussian mixture clustering and imputation of microarray data
    • doi:10.1093/bioinformatics/bth007
    • Ouyang, M., Welsh, W.J., Geogopoulos, P.: Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20, 917-923 (2004), doi:10.1093/bioinformatics/bth007
    • (2004) Bioinformatics , vol.20 , pp. 917-923
    • Ouyang, M.1    Welsh, W.J.2    Geogopoulos, P.3
  • 12
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • doi:10.1093/bioinformatics/btg287
    • Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii, S.: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16), 2088-2096 (2003), doi:10.1093/bioinformatics/btg287
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2088-2096
    • Oba, S.1    Sato, M.2    Takemasa, I.3    Monden, M.4    Matsubara, K.5    Ishii, S.6
  • 13
    • 0042706147 scopus 로고    scopus 로고
    • Genomic analysis of gene expression relationships in transcriptional regulatory networks
    • doi:10.1016/S0168-9525(03)00175-6
    • Yu, H., Luscombe, N.M., Qian, J., Gerstein, M.: Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends in Genetics 19(8), 422-427 (2003), doi:10.1016/S0168-9525(03)00175-6
    • (2003) Trends in Genetics , vol.19 , Issue.8 , pp. 422-427
    • Yu, H.1    Luscombe, N.M.2    Qian, J.3    Gerstein, M.4
  • 15
    • 58349093534 scopus 로고    scopus 로고
    • BNFinder: Exact and efficient method for learning Bayesian networks
    • doi:10.1093/bioinformatics/btn505
    • Wilczynski, B., Dojer, N.: BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics 25(2), 286-287 (2009), doi:10.1093/bioinformatics/btn505
    • (2009) Bioinformatics , vol.25 , Issue.2 , pp. 286-287
    • Wilczynski, B.1    Dojer, N.2
  • 16
    • 80053452578 scopus 로고    scopus 로고
    • GlobalMIT: Learning Globally Optimal Dynamic Bayesian Network with the Mutual Information Test (MIT) Criterion
    • doi:10.1093/bioinformatics/btr457
    • Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: GlobalMIT: Learning Globally Optimal Dynamic Bayesian Network with the Mutual Information Test (MIT) Criterion. Bioinformatics (2011), doi:10.1093/bioinformatics/btr457
    • (2011) Bioinformatics
    • Vinh, N.X.1    Chetty, M.2    Coppel, R.3    Wangikar, P.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.