메뉴 건너뛰기




Volumn 39, Issue 6, 2014, Pages 507-520

A new Bayesian ensemble of trees approach for land cover classification of satellite imagery

Author keywords

[No Author keywords available]

Indexed keywords

BINARY TREES; FORESTRY; REMOTE SENSING;

EID: 84896368510     PISSN: 07038992     EISSN: 17127971     Source Type: Journal    
DOI: 10.5589/m14-003     Document Type: Article
Times cited : (13)

References (33)
  • 2
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Bazi, Y, and Melgani, F. 2006. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 11, pp. 3374-3385.
    • (2006) IEEE Transactions On Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 6
    • 84885052913 scopus 로고    scopus 로고
    • BayesTree: Bayesian Methods for Tree Based Models
    • URL
    • Chipman, H., and McCulloch, R. 2009. BayesTree: Bayesian Methods for Tree Based Models. R package version 0.3-1.1, URL: http://cran.r-project.org/web/packages/BayesTree.
    • (2009) R Package Version 0.3-1.1
    • Chipman, H.1    McCulloch, R.2
  • 8
    • 0037058334 scopus 로고    scopus 로고
    • Evidential reasoning with Landsat TM, DEM, and GIS data for land cover classification in support of grizzly bear habitat mapping
    • Franklin, S.E., Peddle, D.R., Dechka, J.A., and Stenhouse, GB. 2002. Evidential reasoning with Landsat TM, DEM, and GIS data for land cover classification in support of grizzly bear habitat mapping. International Journal of Remote Sensing, Vol. 23, pp. 4633-4652.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 4633-4652
    • Franklin, S.E.1    Peddle, D.R.2    Dechka, J.A.3    Stenhouse, G.B.4
  • 9
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A., and Brodley, C.E. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, Vol. 61, pp. 399-409.
    • (1997) Remote Sensing of Environment , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 11
    • 3042729893 scopus 로고    scopus 로고
    • Remote sensing and land cover area estimation
    • Gallego, F.J. 2004. Remote sensing and land cover area estimation. International Journal of Remote Sensing, Vol. 25, pp. 3019-3047.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 3019-3047
    • Gallego, F.J.1
  • 12
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: An alternative to traditional landcover classifiers
    • Hansen, M., Dubayah, R., and Defries, R. 1996. Classification trees: An alternative to traditional landcover classifiers. International Journal of Remote Sensing, Vol. 17, pp. 1075-1081.
    • (1996) International Journal of Remote Sensing , vol.17 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    Defries, R.3
  • 13
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, C.W, and Lin, C.J. 2002. A comparison of methods for multi-class support vector machines. IEEE transactions on Neural Networks, Vol. 13, No. 2, pp. 415-425.
    • (2002) IEEE Transactions On Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 15
    • 84896370556 scopus 로고    scopus 로고
    • Kernlab: Kernel-based Machine Learning Lab
    • URL
    • Karatzoglou, A., Smola, A., and Hornik, K. 2013. Kernlab: Kernel-based Machine Learning Lab. R package version 0.9-18, URL: http://cran.r-project.org/web/packages/kernlab.
    • (2013) R Package Version 0.9-18
    • Karatzoglou, A.1    Smola, A.2    Hornik, K.3
  • 17
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence, R., Bunn, A., Powell, S., and Zambon, M. 2004. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, Vol. 90, pp. 331-336.
    • (2004) Remote Sensing of Environment , vol.90 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3    Zambon, M.4
  • 18
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest neighbor for hyperspectral image classification
    • Li, M., Crawford, M.M., and Jinwen, T. 2010. Local manifold learning-based k-nearest neighbor for hyperspectral image classification. IEEE Transactions on Geosciences and Remote Sensing, Vol. 48, No. 11, pp. 4099-4109.
    • (2010) IEEE Transactions On Geosciences and Remote Sensing , vol.48 , Issue.11 , pp. 4099-4109
    • Li, M.1    Crawford, M.M.2    Jinwen, T.3
  • 20
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D., and Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, Vol. 28, No. 5, pp. 823-870.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 21
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M., and Mather, P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, Vol. 86, pp. 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 22
    • 0027149228 scopus 로고
    • An empirical comparison of evidential reasoning, linear discriminant analysis and maximum likelihood algorithms for alpine land cover classification
    • Peddle, D.R. 1993. An empirical comparison of evidential reasoning, linear discriminant analysis and maximum likelihood algorithms for alpine land cover classification. Canadian Journal of Remote Sensing, Vol. 19, No. 1, pp. 31-44.
    • (1993) Canadian Journal of Remote Sensing , vol.19 , Issue.1 , pp. 31-44
    • Peddle, D.R.1
  • 24
    • 84857004904 scopus 로고    scopus 로고
    • Comparison of artificial neural network and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image
    • Song, X., Duan, Z., and Jiang, X. 2012. Comparison of artificial neural network and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image. International Journal of Remote Sensing, Vol. 33, No. 10, pp. 3301-3320.
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.10 , pp. 3301-3320
    • Song, X.1    Duan, Z.2    Jiang, X.3
  • 25
    • 84885756130 scopus 로고    scopus 로고
    • Performance comparison of SVM and k-NN in automatic classification of human gait pattern
    • Sudha, L.R., and Bhavani, R. 2012. Performance comparison of SVM and k-NN in automatic classification of human gait pattern. International Journal of Computers, Vol. 6, No. 1, pp. 19-28.
    • (2012) International Journal of Computers , vol.6 , Issue.1 , pp. 19-28
    • Sudha, L.R.1    Bhavani, R.2
  • 26
    • 84908354293 scopus 로고    scopus 로고
    • Rpart: Recursive partitioning and regression trees
    • URL
    • Therneau, T., Atkinson, B., and Ripley, B. 2013. Rpart: recursive partitioning and regression trees, R package version 4.1-1, URL: http://cran.r-project.org/web/packages/rpart
    • (2013) R Package Version 4.1-1
    • Therneau, T.1    Atkinson, B.2    Ripley, B.3
  • 28
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik, VB., Golowich, S.E., and Smola, A.J. 1996. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, Vol. 9, pp. 281-287.
    • (1996) Advances In Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.B.1    Golowich, S.E.2    Smola, A.J.3
  • 29
    • 84876487417 scopus 로고
    • Minimum distance classification in remote sensing
    • Wacker, A.G, and Landgrebe, D.A. 1972. Minimum distance classification in remote sensing. LARS Technical reports, Paper 25. http://docs.lib. purdue.edu/larstech/25.
    • (1972) LARS Technical Reports , pp. 25
    • Wacker, A.G.1    Landgrebe, D.A.2
  • 30
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu, T.-F., Lin, C.-J, and Weng, R.C. 2004. Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, Vol. 5, pp. 975-1005.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 31
  • 32
    • 77249116651 scopus 로고    scopus 로고
    • The Bayesian additive classification tree applied to credit risk modeling
    • Zhang, J.L., and Hardle, W.K. 2010. The Bayesian additive classification tree applied to credit risk modeling. Computational Statistics and Data Analysis, Vol. 54, pp. 1197-1205.
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 1197-1205
    • Zhang, J.L.1    Hardle, W.K.2
  • 33
    • 0142030598 scopus 로고    scopus 로고
    • A rule-based urban land use inferring method for fine resolution multispectral imagery
    • Zhang, Q., and Wang, J. 2003. A rule-based urban land use inferring method for fine resolution multispectral imagery. Canadian Journal of Remote Sensing, Vol. 29, pp. 1-13.
    • (2003) Canadian Journal of Remote Sensing , vol.29 , pp. 1-13
    • Zhang, Q.1    Wang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.