-
1
-
-
0001160588
-
What size net gives valid generalization?
-
Baum, E.B. and Haussler, D. 1989. What size net gives valid generalization?. Neural Computation, 1: 151-160.
-
(1989)
Neural Computation
, vol.1
, pp. 151-160
-
-
Baum, E.B.1
Haussler, D.2
-
3
-
-
0022604106
-
A review of 3 discrete multivariate-analysis techniques used in assessing the accuracy of remotely sensed data from error matrices
-
Congalton, R.G. and Mead, R.A. 1986. A review of 3 discrete multivariate-analysis techniques used in assessing the accuracy of remotely sensed data from error matrices. IEEE Transactions on Geoscience and Remote Sensing, 24: 169-174.
-
(1986)
IEEE Transactions on Geoscience and Remote Sensing
, vol.24
, pp. 169-174
-
-
Congalton, R.G.1
Mead, R.A.2
-
4
-
-
37549004391
-
Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?
-
Dixon, B. and Candade, N. 2008. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?. International Journal of Remote Sensing, 29: 1185-1206.
-
(2008)
International Journal of Remote Sensing
, vol.29
, pp. 1185-1206
-
-
Dixon, B.1
Candade, N.2
-
5
-
-
4544272407
-
Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
-
Foody, G.M. and Mathur, A. 2004. Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment, 93: 107-117.
-
(2004)
Remote Sensing of Environment
, vol.93
, pp. 107-117
-
-
Foody, G.M.1
Mathur, A.2
-
6
-
-
33745756516
-
The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM
-
Foody, G.M. and Mathur, A. 2006. The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment, 103: 179-189.
-
(2006)
Remote Sensing of Environment
, vol.103
, pp. 179-189
-
-
Foody, G.M.1
Mathur, A.2
-
7
-
-
0029473455
-
The effect of training set size and composition on artificial neural-network classification
-
Foody, G.M., McCulloch, M.B. and Yates, W.B. 1995. The effect of training set size and composition on artificial neural-network classification. International Journal of Remote Sensing, 16: 1707-1723.
-
(1995)
International Journal of Remote Sensing
, vol.16
, pp. 1707-1723
-
-
Foody, G.M.1
McCulloch, M.B.2
Yates, W.B.3
-
8
-
-
33645721547
-
The influence of spectral resolution on discriminating Brazilian sugarcane varieties
-
Galvao, L.S., Formaggio, A.R. and Tisot, D.A. 2006. The influence of spectral resolution on discriminating Brazilian sugarcane varieties. International Journal of Remote Sensing, 27: 769-777.
-
(2006)
International Journal of Remote Sensing
, vol.27
, pp. 769-777
-
-
Galvao, L.S.1
Formaggio, A.R.2
Tisot, D.A.3
-
9
-
-
0025573206
-
Artificial neural network classification using a minimal training set: comparison to conventional supervised classification
-
Hepner, G.F., Logan, T., Ritter, N. and Bryant, N. 1990. Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56: 469-473.
-
(1990)
Photogrammetric Engineering and Remote Sensing
, vol.56
, pp. 469-473
-
-
Hepner, G.F.1
Logan, T.2
Ritter, N.3
Bryant, N.4
-
10
-
-
34548430966
-
Representation of an alpine treeline ecotone in SPOT 5 HRG data
-
Hill, R.A., Granica, K., Smith, G.M. and Schardt, M. 2007. Representation of an alpine treeline ecotone in SPOT 5 HRG data. Remote Sensing of Environment, 110: 458-467.
-
(2007)
Remote Sensing of Environment
, vol.110
, pp. 458-467
-
-
Hill, R.A.1
Granica, K.2
Smith, G.M.3
Schardt, M.4
-
11
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu, C.W. and Lin, C.J. 2002. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13: 415-425.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
12
-
-
0037138473
-
An assessment of support vector machines for land cover classification
-
Huang, C., Davis, L.S. and Townshend, J.R.G. 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23: 725-749.
-
(2002)
International Journal of Remote Sensing
, vol.23
, pp. 725-749
-
-
Huang, C.1
Davis, L.S.2
Townshend, J.R.G.3
-
13
-
-
77957741951
-
On mean accuracy of statistical pattern recognizers
-
Hughes, G.F. 1968. On mean accuracy of statistical pattern recognizers. Transactions on Information Theory, 14: 55-63.
-
(1968)
Transactions on Information Theory
, vol.14
, pp. 55-63
-
-
Hughes, G.F.1
-
14
-
-
33644966549
-
A comparison of SVMs with MLC algorithms on texture features
-
Wuhan, China: SPIE
-
Jin, S., Li, D. and Gong, J. A comparison of SVMs with MLC algorithms on texture features. Proceedings of SPIE - The International Society for Optical Engineering, The Fourth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2005). 31 October-2 November2005, Bellingham, WA. Vol. 6044, pp.60442B.1-60442B.6. Wuhan, China: SPIE.
-
(2005)
, vol.6044
, pp. 1-6
-
-
Jin, S.1
Li, D.2
Gong, J.3
-
15
-
-
62349132975
-
Increasing the accuracy of neural network classification using refined training data
-
Kavzoglu, T. 2009. Increasing the accuracy of neural network classification using refined training data. Environmental Modelling & Software, 24: 850-858.
-
(2009)
Environmental Modelling & Software
, vol.24
, pp. 850-858
-
-
Kavzoglu, T.1
-
17
-
-
0033454031
-
Pruning artificial neural networks: an example using land cover classification of multi-sensor images
-
Kavzoglu, T. and Mather, P.M. 1999. Pruning artificial neural networks: an example using land cover classification of multi-sensor images. International Journal of Remote Sensing, 20: 2787-2803.
-
(1999)
International Journal of Remote Sensing
, vol.20
, pp. 2787-2803
-
-
Kavzoglu, T.1
Mather, P.M.2
-
18
-
-
0346245214
-
The use of backpropagating artificial neural networks in land cover classification
-
Kavzoglu, T. and Mather, P.M. 2003. The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24: 4907-4938.
-
(2003)
International Journal of Remote Sensing
, vol.24
, pp. 4907-4938
-
-
Kavzoglu, T.1
Mather, P.M.2
-
19
-
-
33947591833
-
A survey of image classification methods and techniques for improving classification performance
-
Lu, D. and Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28: 823-870.
-
(2007)
International Journal of Remote Sensing
, vol.28
, pp. 823-870
-
-
Lu, D.1
Weng, Q.2
-
20
-
-
57649140412
-
Multiclass and binary SVM classification: implications for training and classification users
-
Mathur, A. and Foody, G.M. 2008. Multiclass and binary SVM classification: implications for training and classification users. IEEE Geoscience and Remote Sensing Letters, 5: 241-245.
-
(2008)
IEEE Geoscience and Remote Sensing Letters
, vol.5
, pp. 241-245
-
-
Mathur, A.1
Foody, G.M.2
-
21
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Melgani, F. and Bruzzone, L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42: 1778-1790.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
22
-
-
42949094902
-
An objective analysis of support vector machine based classification for remote sensing
-
Oommen, T., Misra, D., Twarakavi, N.K.C., Prakash, A., Sahoo, B. and Bandopadhyay, S. 2008. An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40: 409-424.
-
(2008)
Mathematical Geosciences
, vol.40
, pp. 409-424
-
-
Oommen, T.1
Misra, D.2
Twarakavi, N.K.C.3
Prakash, A.4
Sahoo, B.5
Bandopadhyay, S.6
-
23
-
-
0141569007
-
An assessment of the effectiveness of decision tree methods for land cover classification
-
Pal, M. and Mather, P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86: 554-565.
-
(2003)
Remote Sensing of Environment
, vol.86
, pp. 554-565
-
-
Pal, M.1
Mather, P.M.2
-
24
-
-
4444230479
-
Assessment of the effectiveness of support vector machines for hyperspectral data
-
Pal, M. and Mather, P.M. 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20: 1215-1225.
-
(2004)
Future Generation Computer Systems
, vol.20
, pp. 1215-1225
-
-
Pal, M.1
Mather, P.M.2
-
25
-
-
13644256120
-
Support vector machines for classification in remote sensing
-
Pal, M. and Mather, P.M. 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26: 1007-1011.
-
(2005)
International Journal of Remote Sensing
, vol.26
, pp. 1007-1011
-
-
Pal, M.1
Mather, P.M.2
-
26
-
-
33747086525
-
Some issues in the classification of DAIS hyperspectral data
-
Pal, M. and Mather, P.M. 2006. Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27: 2895-2916.
-
(2006)
International Journal of Remote Sensing
, vol.27
, pp. 2895-2916
-
-
Pal, M.1
Mather, P.M.2
-
27
-
-
0029341018
-
A detailed comparison of backpropagation neural-network and maximum-likelihood classifiers for urban land-use classification
-
Paola, J.D. and Schowengerdt, R.A. 1995. A detailed comparison of backpropagation neural-network and maximum-likelihood classifiers for urban land-use classification. IEEE Transactions on Geoscience and Remote Sensing, 33: 981-996.
-
(1995)
IEEE Transactions on Geoscience and Remote Sensing
, vol.33
, pp. 981-996
-
-
Paola, J.D.1
Schowengerdt, R.A.2
-
28
-
-
11144350965
-
One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks - a case study
-
Singh, U.K., Tiwari, R.K. and Singh, S.B. 2005. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks - a case study. Computers & Geosciences, 31: 99-108.
-
(2005)
Computers & Geosciences
, vol.31
, pp. 99-108
-
-
Singh, U.K.1
Tiwari, R.K.2
Singh, S.B.3
-
29
-
-
76749102447
-
Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network
-
Singh, U.K., Tiwari, R.K. and Singh, S.B. 2010. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network. Nonlinear Processes in Geophysics, 17: 65-76.
-
(2010)
Nonlinear Processes in Geophysics
, vol.17
, pp. 65-76
-
-
Singh, U.K.1
Tiwari, R.K.2
Singh, S.B.3
-
31
-
-
0031923921
-
Land cover classification in rugged areas using simulated moderate-resolution remote sensor data and an artificial neural network
-
Yool, S.R. 1998. Land cover classification in rugged areas using simulated moderate-resolution remote sensor data and an artificial neural network. International Journal of Remote Sensing, 19: 85-96.
-
(1998)
International Journal of Remote Sensing
, vol.19
, pp. 85-96
-
-
Yool, S.R.1
-
32
-
-
34547134220
-
Detailed mapping of a salt farm from Landsat TM imagery using neural network and maximum likelihood classifiers: a comparison
-
Zhang, Y., Gao, J. and Wang, J. 2007. Detailed mapping of a salt farm from Landsat TM imagery using neural network and maximum likelihood classifiers: a comparison. International Journal of Remote Sensing, 28: 2077-2089.
-
(2007)
International Journal of Remote Sensing
, vol.28
, pp. 2077-2089
-
-
Zhang, Y.1
Gao, J.2
Wang, J.3
-
33
-
-
0036113847
-
Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel
-
Zhu, G.B. and Blumberg, D.G. 2002. Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sensing of Environment, 80: 233-240.
-
(2002)
Remote Sensing of Environment
, vol.80
, pp. 233-240
-
-
Zhu, G.B.1
Blumberg, D.G.2
|