메뉴 건너뛰기




Volumn 33, Issue 10, 2012, Pages 3301-3320

Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION ALGORITHMS; CLASSIFICATION (OF INFORMATION); IMAGE CLASSIFICATION; IMAGE SEGMENTATION; LAND USE; RADIAL BASIS FUNCTION NETWORKS; REMOTE SENSING;

EID: 84857004904     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2011.568531     Document Type: Article
Times cited : (78)

References (33)
  • 1
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E.B. and Haussler, D. 1989. What size net gives valid generalization?. Neural Computation, 1: 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 3
    • 0022604106 scopus 로고
    • A review of 3 discrete multivariate-analysis techniques used in assessing the accuracy of remotely sensed data from error matrices
    • Congalton, R.G. and Mead, R.A. 1986. A review of 3 discrete multivariate-analysis techniques used in assessing the accuracy of remotely sensed data from error matrices. IEEE Transactions on Geoscience and Remote Sensing, 24: 169-174.
    • (1986) IEEE Transactions on Geoscience and Remote Sensing , vol.24 , pp. 169-174
    • Congalton, R.G.1    Mead, R.A.2
  • 4
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?
    • Dixon, B. and Candade, N. 2008. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?. International Journal of Remote Sensing, 29: 1185-1206.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 1185-1206
    • Dixon, B.1    Candade, N.2
  • 5
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
    • Foody, G.M. and Mathur, A. 2004. Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment, 93: 107-117.
    • (2004) Remote Sensing of Environment , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 6
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM
    • Foody, G.M. and Mathur, A. 2006. The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment, 103: 179-189.
    • (2006) Remote Sensing of Environment , vol.103 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 7
    • 0029473455 scopus 로고
    • The effect of training set size and composition on artificial neural-network classification
    • Foody, G.M., McCulloch, M.B. and Yates, W.B. 1995. The effect of training set size and composition on artificial neural-network classification. International Journal of Remote Sensing, 16: 1707-1723.
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 1707-1723
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 8
    • 33645721547 scopus 로고    scopus 로고
    • The influence of spectral resolution on discriminating Brazilian sugarcane varieties
    • Galvao, L.S., Formaggio, A.R. and Tisot, D.A. 2006. The influence of spectral resolution on discriminating Brazilian sugarcane varieties. International Journal of Remote Sensing, 27: 769-777.
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 769-777
    • Galvao, L.S.1    Formaggio, A.R.2    Tisot, D.A.3
  • 9
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: comparison to conventional supervised classification
    • Hepner, G.F., Logan, T., Ritter, N. and Bryant, N. 1990. Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56: 469-473.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 469-473
    • Hepner, G.F.1    Logan, T.2    Ritter, N.3    Bryant, N.4
  • 11
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C.W. and Lin, C.J. 2002. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13: 415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 13
    • 77957741951 scopus 로고
    • On mean accuracy of statistical pattern recognizers
    • Hughes, G.F. 1968. On mean accuracy of statistical pattern recognizers. Transactions on Information Theory, 14: 55-63.
    • (1968) Transactions on Information Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 14
    • 33644966549 scopus 로고    scopus 로고
    • A comparison of SVMs with MLC algorithms on texture features
    • Wuhan, China: SPIE
    • Jin, S., Li, D. and Gong, J. A comparison of SVMs with MLC algorithms on texture features. Proceedings of SPIE - The International Society for Optical Engineering, The Fourth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2005). 31 October-2 November2005, Bellingham, WA. Vol. 6044, pp.60442B.1-60442B.6. Wuhan, China: SPIE.
    • (2005) , vol.6044 , pp. 1-6
    • Jin, S.1    Li, D.2    Gong, J.3
  • 15
    • 62349132975 scopus 로고    scopus 로고
    • Increasing the accuracy of neural network classification using refined training data
    • Kavzoglu, T. 2009. Increasing the accuracy of neural network classification using refined training data. Environmental Modelling & Software, 24: 850-858.
    • (2009) Environmental Modelling & Software , vol.24 , pp. 850-858
    • Kavzoglu, T.1
  • 17
    • 0033454031 scopus 로고    scopus 로고
    • Pruning artificial neural networks: an example using land cover classification of multi-sensor images
    • Kavzoglu, T. and Mather, P.M. 1999. Pruning artificial neural networks: an example using land cover classification of multi-sensor images. International Journal of Remote Sensing, 20: 2787-2803.
    • (1999) International Journal of Remote Sensing , vol.20 , pp. 2787-2803
    • Kavzoglu, T.1    Mather, P.M.2
  • 18
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial neural networks in land cover classification
    • Kavzoglu, T. and Mather, P.M. 2003. The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24: 4907-4938.
    • (2003) International Journal of Remote Sensing , vol.24 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 19
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D. and Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28: 823-870.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 20
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary SVM classification: implications for training and classification users
    • Mathur, A. and Foody, G.M. 2008. Multiclass and binary SVM classification: implications for training and classification users. IEEE Geoscience and Remote Sensing Letters, 5: 241-245.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , pp. 241-245
    • Mathur, A.1    Foody, G.M.2
  • 21
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F. and Bruzzone, L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42: 1778-1790.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 23
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M. and Mather, P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86: 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 24
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal, M. and Mather, P.M. 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20: 1215-1225.
    • (2004) Future Generation Computer Systems , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 25
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M. and Mather, P.M. 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26: 1007-1011.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 26
    • 33747086525 scopus 로고    scopus 로고
    • Some issues in the classification of DAIS hyperspectral data
    • Pal, M. and Mather, P.M. 2006. Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27: 2895-2916.
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 2895-2916
    • Pal, M.1    Mather, P.M.2
  • 27
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural-network and maximum-likelihood classifiers for urban land-use classification
    • Paola, J.D. and Schowengerdt, R.A. 1995. A detailed comparison of backpropagation neural-network and maximum-likelihood classifiers for urban land-use classification. IEEE Transactions on Geoscience and Remote Sensing, 33: 981-996.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 28
    • 11144350965 scopus 로고    scopus 로고
    • One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks - a case study
    • Singh, U.K., Tiwari, R.K. and Singh, S.B. 2005. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks - a case study. Computers & Geosciences, 31: 99-108.
    • (2005) Computers & Geosciences , vol.31 , pp. 99-108
    • Singh, U.K.1    Tiwari, R.K.2    Singh, S.B.3
  • 29
    • 76749102447 scopus 로고    scopus 로고
    • Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network
    • Singh, U.K., Tiwari, R.K. and Singh, S.B. 2010. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network. Nonlinear Processes in Geophysics, 17: 65-76.
    • (2010) Nonlinear Processes in Geophysics , vol.17 , pp. 65-76
    • Singh, U.K.1    Tiwari, R.K.2    Singh, S.B.3
  • 31
    • 0031923921 scopus 로고    scopus 로고
    • Land cover classification in rugged areas using simulated moderate-resolution remote sensor data and an artificial neural network
    • Yool, S.R. 1998. Land cover classification in rugged areas using simulated moderate-resolution remote sensor data and an artificial neural network. International Journal of Remote Sensing, 19: 85-96.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 85-96
    • Yool, S.R.1
  • 32
    • 34547134220 scopus 로고    scopus 로고
    • Detailed mapping of a salt farm from Landsat TM imagery using neural network and maximum likelihood classifiers: a comparison
    • Zhang, Y., Gao, J. and Wang, J. 2007. Detailed mapping of a salt farm from Landsat TM imagery using neural network and maximum likelihood classifiers: a comparison. International Journal of Remote Sensing, 28: 2077-2089.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 2077-2089
    • Zhang, Y.1    Gao, J.2    Wang, J.3
  • 33
    • 0036113847 scopus 로고    scopus 로고
    • Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel
    • Zhu, G.B. and Blumberg, D.G. 2002. Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sensing of Environment, 80: 233-240.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 233-240
    • Zhu, G.B.1    Blumberg, D.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.