-
1
-
-
0024373052
-
Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching
-
Chary SR, Jain RK (1989) Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci U S A 86: 5385-5389. (Pubitemid 19185554)
-
(1989)
Proceedings of the National Academy of Sciences of the United States of America
, vol.86
, Issue.14
, pp. 5385-5389
-
-
Chary, S.R.1
Jain, R.K.2
-
2
-
-
0037112366
-
Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: Magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin
-
Dafni H, Israely T, Bhujwalla ZM, Benjamin LE, Neeman M (2002) Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 62: 6731-6739. (Pubitemid 35364145)
-
(2002)
Cancer Research
, vol.62
, Issue.22
, pp. 6731-6739
-
-
Dafni, H.1
Israely, T.2
Bhujwalla, Z.M.3
Benjamin, L.E.4
Neeman, M.5
-
3
-
-
58149252326
-
Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis
-
Hernandez Vera R, Genove E, Alvarez L, Borros S, Kamm R, et al. (2009) Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis. Tissue Eng Part A 15: 175-185.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 175-185
-
-
Hernandez Vera, R.1
Genove, E.2
Alvarez, L.3
Borros, S.4
Kamm, R.5
-
4
-
-
34548613758
-
Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly
-
DOI 10.1089/ten.2006.0364
-
Dvir T, Levy O, Shachar M, Granot Y, Cohen S (2007) Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng 13: 2185-2193. (Pubitemid 47404434)
-
(2007)
Tissue Engineering
, vol.13
, Issue.9
, pp. 2185-2193
-
-
Dvir, T.1
Levy, O.2
Shachar, M.3
Granot, Y.4
Cohen, S.5
-
5
-
-
27844457560
-
Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro
-
DOI 10.1242/jcs.02605
-
Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118: 4731-4739. (Pubitemid 41646383)
-
(2005)
Journal of Cell Science
, vol.118
, Issue.20
, pp. 4731-4739
-
-
Ng, C.P.1
Hinz, B.2
Swartz, M.A.3
-
7
-
-
0028401483
-
Review: Bone tissue engineering: The role of interstitial fluid flow
-
Hillsley MV, Frangos JA (1994) Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng 43: 573-581. (Pubitemid 24090704)
-
(1994)
Biotechnology and Bioengineering
, vol.43
, Issue.7
, pp. 573-581
-
-
Hillsley, M.V.1
Frangos, J.A.2
-
8
-
-
71249083983
-
Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation
-
Hayward LN, Morgan EF (2009) Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Biomech Model Mechanobiol 8: 447-455.
-
(2009)
Biomech Model Mechanobiol
, vol.8
, pp. 447-455
-
-
Hayward, L.N.1
Morgan, E.F.2
-
9
-
-
56449086365
-
The mechanical environment of bone marrow: A review
-
Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36: 1978-1991.
-
(2008)
Ann Biomed Eng
, vol.36
, pp. 1978-1991
-
-
Gurkan, U.A.1
Akkus, O.2
-
10
-
-
33644517215
-
In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation
-
Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, et al. (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A 103: 2488-2493.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 2488-2493
-
-
Datta, N.1
Pham, Q.P.2
Sharma, U.3
Sikavitsas, V.I.4
Jansen, J.A.5
-
11
-
-
3142761977
-
Fluid shear of low magnitude increases growth and expression of TGFbeta1 and adhesion molecules in human bone cells in vitro
-
DOI 10.1055/s-2004-821014
-
Liegibel UM, Sommer U, Bundschuh B, Schweizer B, Hilscher U, et al. (2004) Fluid shear of low magnitude increases growth and expression of TGFbeta1 and adhesion molecules in human bone cells in vitro. Exp Clin Endocrinol Diabetes 112: 356-363. (Pubitemid 38915712)
-
(2004)
Experimental and Clinical Endocrinology and Diabetes
, vol.112
, Issue.7
, pp. 356-363
-
-
Liegibel, U.M.1
Sommer, U.2
Bundschuh, B.3
Schweizer, B.4
Hilscher, U.5
Lieder, A.6
Nawroth, P.7
Kasperk, C.8
-
12
-
-
33846560757
-
Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles
-
DOI 10.1002/jcb.21089
-
Ponik SM, Triplett JW, Pavalko FM (2007) Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J Cell Biochem 100: 794-807. (Pubitemid 46180540)
-
(2007)
Journal of Cellular Biochemistry
, vol.100
, Issue.3
, pp. 794-807
-
-
Ponik, S.M.1
Triplett, J.W.2
Pavalko, F.M.3
-
13
-
-
33745498419
-
Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: Implication of different focal adhesion formation
-
DOI 10.1359/jbmr.060408
-
Kamioka H, Sugawara Y, Murshid SA, Ishihara Y, Honjo T, et al. (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21: 1012-1021. (Pubitemid 43962830)
-
(2006)
Journal of Bone and Mineral Research
, vol.21
, Issue.7
, pp. 1012-1021
-
-
Kamioka, H.1
Sugawara, Y.2
Murshid, S.A.3
Ishihara, Y.4
Honjo, T.5
Takano-Yamamoto, T.6
-
14
-
-
26844433558
-
Study of osteoblastic cells in a microfluidic environment
-
DOI 10.1016/j.biomaterials.2005.06.002, PII S0142961205005004
-
Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, et al. (2006) Study of osteoblastic cells in a microfluidic environment. Biomaterials 27: 586-595. (Pubitemid 41464254)
-
(2006)
Biomaterials
, vol.27
, Issue.4
, pp. 586-595
-
-
Leclerc, E.1
David, B.2
Griscom, L.3
Lepioufle, B.4
Fujii, T.5
Layrolle, P.6
Legallaisa, C.7
-
15
-
-
77955732833
-
Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice
-
Kwon RY, Meays DR, Tang WJ, Frangos JA (2010) Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res 25: 1798-1807.
-
(2010)
J Bone Miner Res
, vol.25
, pp. 1798-1807
-
-
Kwon, R.Y.1
Meays, D.R.2
Tang, W.J.3
Frangos, J.A.4
-
16
-
-
84857134964
-
The effects of mechanical loading on mesenchymal stem cell differentiation and matrix production
-
Delaine-Smith R, Reilly G (2011) The effects of mechanical loading on mesenchymal stem cell differentiation and matrix production. Vitam Horm 87: 417-480.
-
(2011)
Vitam Horm
, vol.87
, pp. 417-480
-
-
Delaine-Smith, R.1
Reilly, G.2
-
17
-
-
84868230326
-
Matrix production and collagen structure are enhanced in two types of osteogenic progenitor cells by a simple fluid shear stress stimulus
-
Delaine-Smith R, MacNeil S, Reilly G (2012) Matrix production and collagen structure are enhanced in two types of osteogenic progenitor cells by a simple fluid shear stress stimulus. Eur Cell Mater 24: 162-174.
-
(2012)
Eur Cell Mater
, vol.24
, pp. 162-174
-
-
Delaine-Smith, R.1
MacNeil, S.2
Reilly, G.3
-
18
-
-
0035918140
-
Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts
-
You J, Reilly G, Zhen X, Yellowley C, Chen Q, et al. (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276: 13365-13371.
-
(2001)
J Biol Chem
, vol.276
, pp. 13365-13371
-
-
You, J.1
Reilly, G.2
Zhen, X.3
Yellowley, C.4
Chen, Q.5
-
19
-
-
84861829225
-
Mechanical regulation of signaling pathways in bone
-
Thompson WR, Rubin CT, Rubin J (2012) Mechanical regulation of signaling pathways in bone. Gene 503: 179-193.
-
(2012)
Gene
, vol.503
, pp. 179-193
-
-
Thompson, W.R.1
Rubin, C.T.2
Rubin, J.3
-
20
-
-
64849094619
-
Mechanically induced osteogenic differentiation - The role of RhoA, ROCKII and cytoskeletal dynamics
-
Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation-the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122: 546-553.
-
(2009)
J Cell Sci
, vol.122
, pp. 546-553
-
-
Arnsdorf, E.J.1
Tummala, P.2
Kwon, R.Y.3
Jacobs, C.R.4
-
21
-
-
0030684749
-
Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts
-
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, et al. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764. (Pubitemid 27516178)
-
(1997)
Cell
, vol.89
, Issue.5
, pp. 755-764
-
-
Komori, T.1
Yagi, H.2
Nomura, S.3
Yamaguchi, A.4
Sasaki, K.5
Deguchi, K.6
Shimizu, Y.7
Bronson, R.T.8
Gao, Y.-H.9
Inada, M.10
Sato, M.11
Okamoto, R.12
Kitamura, Y.13
Yoshiki, S.14
Kishimoto, T.15
-
22
-
-
0030678549
-
Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation
-
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747-754. (Pubitemid 27516177)
-
(1997)
Cell
, vol.89
, Issue.5
, pp. 747-754
-
-
Ducy, P.1
Zhang, R.2
Geoffroy, V.3
Ridall, A.L.4
Karsenty, G.5
-
23
-
-
79952780313
-
Bioreactors for bone tissue engineering
-
El Haj A, Cartmell S (2010) Bioreactors for bone tissue engineering. Proc Inst Mech Eng H 224: 1523-1532.
-
(2010)
Proc Inst Mech Eng H
, vol.224
, pp. 1523-1532
-
-
El Haj, A.1
Cartmell, S.2
-
24
-
-
33747116681
-
Cells on chips
-
DOI 10.1038/nature05063, PII NATURE05063
-
El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442: 403-411. (Pubitemid 44264784)
-
(2006)
Nature
, vol.442
, Issue.7101
, pp. 403-411
-
-
El-Ali, J.1
Sorger, P.K.2
Jensen, K.F.3
-
25
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides GM (2006) The origins and the future of microfluidics. Nature 442: 368-373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
26
-
-
79955661669
-
A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts
-
Kou S, Pan L, van Noort D, Meng G, Wu X, et al. (2011) A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts. Biochem Biophys Res Commun 408: 350-355.
-
(2011)
Biochem Biophys Res Commun
, vol.408
, pp. 350-355
-
-
Kou, S.1
Pan, L.2
Van Noort, D.3
Meng, G.4
Wu, X.5
-
27
-
-
84870905500
-
Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: A microfluidic study
-
Camb
-
Zheng W, Xie Y, Zhang W, Wang D, Ma W, et al. (2012) Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr Biol (Camb) 4: 1102-1111.
-
(2012)
Integr Biol
, vol.4
, pp. 1102-1111
-
-
Zheng, W.1
Xie, Y.2
Zhang, W.3
Wang, D.4
Ma, W.5
-
28
-
-
84863666141
-
A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs
-
Rotenberg MY, Ruvinov E, Armoza A, Cohen S (2012) A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs. Lab Chip 12: 2696-2703.
-
(2012)
Lab Chip
, vol.12
, pp. 2696-2703
-
-
Rotenberg, M.Y.1
Ruvinov, E.2
Armoza, A.3
Cohen, S.4
-
29
-
-
77951487181
-
Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay
-
Christophis C, Grunze M, Rosenhahn A (2010) Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay. Phys Chem Chem Phys 12: 4498-4504.
-
(2010)
Phys Chem Chem Phys
, vol.12
, pp. 4498-4504
-
-
Christophis, C.1
Grunze, M.2
Rosenhahn, A.3
-
30
-
-
79956340393
-
Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations
-
Chin LK, Yu JQ, Fu Y, Yu T, Liu AQ, et al. (2011) Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations. Lab Chip 11: 1856-1863.
-
(2011)
Lab Chip
, vol.11
, pp. 1856-1863
-
-
Chin, L.K.1
Yu, J.Q.2
Fu, Y.3
Yu, T.4
Liu, A.Q.5
-
31
-
-
73149098460
-
Spatially resolved shear distribution in microfluidic chip for studying force transduction mechanisms in cells
-
Wang J, Heo J, Hua SZ (2010) Spatially resolved shear distribution in microfluidic chip for studying force transduction mechanisms in cells. Lab Chip 10: 235-239.
-
(2010)
Lab Chip
, vol.10
, pp. 235-239
-
-
Wang, J.1
Heo, J.2
Hua, S.Z.3
-
32
-
-
70350442774
-
Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress
-
Shao J, Wu L, Wu J, Zheng Y, Zhao H, et al. (2009) Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9: 3118-3125.
-
(2009)
Lab Chip
, vol.9
, pp. 3118-3125
-
-
Shao, J.1
Wu, L.2
Wu, J.3
Zheng, Y.4
Zhao, H.5
-
33
-
-
79951474125
-
Fluid-shear-stress- induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells
-
Camb
-
Jang KJ, Cho HS, Kang do H, Bae WG, Kwon TH, et al. (2011) Fluid-shear-stress- induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol (Camb) 3: 134-141.
-
(2011)
Integr Biol
, vol.3
, pp. 134-141
-
-
Jang, K.J.1
Cho, H.S.2
Kang Do, H.3
Bae, W.G.4
Kwon, T.H.5
-
34
-
-
78649501012
-
Cell morphological response to low shear stress in a two-dimensional culture microsystem with magnitudes comparable to interstitial shear stress
-
Park J, Yoo S, Patel L, Lee S, Lee S (2012) Cell morphological response to low shear stress in a two-dimensional culture microsystem with magnitudes comparable to interstitial shear stress. Biorheology 47: 165-178.
-
(2012)
Biorheology
, vol.47
, pp. 165-178
-
-
Park, J.1
Yoo, S.2
Patel, L.3
Lee, S.4
Lee, S.5
-
36
-
-
0035062331
-
2 but no change in mineralization
-
Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD (2001) Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J Appl Physiol 90: 1849-1854. (Pubitemid 32336468)
-
(2001)
Journal of Applied Physiology
, vol.90
, Issue.5
, pp. 1849-1854
-
-
Nauman, E.A.1
Satcher, R.L.2
Keaveny, T.M.3
Halloran, B.P.4
Bikle, D.D.5
-
37
-
-
42049100497
-
Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells
-
DOI 10.1089/tea.2007.0068
-
Kreke MR, Sharp LA, Lee YW, Goldstein AS (2008) Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng Part A 14: 529-537. (Pubitemid 351520460)
-
(2008)
Tissue Engineering - Part A
, vol.14
, Issue.4
, pp. 529-537
-
-
Kreke, M.R.1
Sharp, L.A.2
Woo, L.Y.3
Goldstein, A.S.4
-
39
-
-
47049084249
-
Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system
-
DOI 10.1002/jbm.a.31607
-
Scaglione S, Wendt D, Miggino S, Papadimitropoulos A, Fato M, et al. (2008) Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system. J Biomed Mater Res A 86: 411-419. (Pubitemid 351969639)
-
(2008)
Journal of Biomedical Materials Research - Part A
, vol.86
, Issue.2
, pp. 411-419
-
-
Scaglione, S.1
Wendt, D.2
Miggino, S.3
Papadimitropoulos, A.4
Fato, M.5
Quarto, R.6
Martin, I.7
|