메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

Electricity load forecasting using support vector regression with memetic algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ELECTRICITY; ELECTRICITY LOAD FORECASTING; EVOLUTIONARY ALGORITHM; FORECASTING; GENETIC ALGORITHM; HYBRIDIZATION; KERNEL METHOD; SUPPORT VECTOR MACHINE;

EID: 84896338100     PISSN: None     EISSN: 1537744X     Source Type: Journal    
DOI: 10.1155/2013/292575     Document Type: Article
Times cited : (60)

References (57)
  • 1
    • 32144462264 scopus 로고    scopus 로고
    • Short-term load forecasting based on an adaptive hybrid method
    • DOI 10.1109/TPWRS.2005.860944
    • Fan S., Chen L., Short-term load forecasting based on an adaptive hybrid method. IEEE Transactions on Power Systems 2006 21 1 392 401 2-s2.0-32144462264 10.1109/TPWRS.2005.860944 (Pubitemid 43204739)
    • (2006) IEEE Transactions on Power Systems , vol.21 , Issue.1 , pp. 392-401
    • Fan, S.1    Chen, L.2
  • 3
    • 0035048735 scopus 로고    scopus 로고
    • Univariate modeling and forecasting of energy consumption: The case of electricity in Lebanon
    • DOI 10.1016/S0360-5442(00)00049-9, PII S0360544200000499
    • Saab S., Badr E., Nasr G., Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon. Energy 2001 26 1 1 14 2-s2.0-0035048735 10.1016/S0360-5442(00)00049-9 (Pubitemid 32305135)
    • (2001) Energy , vol.26 , Issue.1 , pp. 1-14
    • Saab, S.1    Badr, E.2    Nasr, G.3
  • 4
    • 0032205039 scopus 로고    scopus 로고
    • The impacts of temperature forecast uncertainty on bayesian load forecasting
    • Douglas A. P., Breipohl A. M., Lee F. N., Adapa R., The impacts of temperature forecast uncertainty on bayesian load forecasting. IEEE Transactions on Power Systems 1998 13 4 1507 1513 2-s2.0-0032205039 10.1109/59.736298 (Pubitemid 128749043)
    • (1998) IEEE Transactions on Power Systems , vol.13 , Issue.4 , pp. 1507-1513
    • Douglas, A.P.1    Breipohl, A.M.2    Lee, F.N.3    Adapa, R.4
  • 5
    • 0026154960 scopus 로고
    • Composite modeling for adaptive short-term load forecasting
    • 2-s2.0-0026154960 10.1109/59.76686
    • Park J. H., Park Y. M., Lee K. Y., Composite modeling for adaptive short-term load forecasting. IEEE Transactions on Power Systems 1991 6 2 450 457 2-s2.0-0026154960 10.1109/59.76686
    • (1991) IEEE Transactions on Power Systems , vol.6 , Issue.2 , pp. 450-457
    • Park, J.H.1    Park, Y.M.2    Lee, K.Y.3
  • 6
    • 77956261937 scopus 로고    scopus 로고
    • Functional clustering and linear regression for peak load forecasting
    • 2-s2.0-77956261937 10.1016/j.ijforecast.2009.05.015
    • Goia A., May C., Fusai G., Functional clustering and linear regression for peak load forecasting. International Journal of Forecasting 2010 26 4 700 711 2-s2.0-77956261937 10.1016/j.ijforecast.2009.05.015
    • (2010) International Journal of Forecasting , vol.26 , Issue.4 , pp. 700-711
    • Goia, A.1    May, C.2    Fusai, G.3
  • 7
    • 40949130866 scopus 로고    scopus 로고
    • Electricity demand for Sri Lanka: A time series analysis
    • 2-s2.0-40949130866 10.1016/j.energy.2007.12.008
    • Amarawickrama H. A., Hunt L. C., Electricity demand for Sri Lanka: a time series analysis. Energy 2008 33 5 724 739 2-s2.0-40949130866 10.1016/j.energy.2007.12.008
    • (2008) Energy , vol.33 , Issue.5 , pp. 724-739
    • Amarawickrama, H.A.1    Hunt, L.C.2
  • 8
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • DOI 10.1109/59.910780, PII S0885895001023069
    • Hippert H. S., Pedreira C. E., Souza R. C., Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems 2001 16 1 44 55 2-s2.0-0035248045 10.1109/59.910780 (Pubitemid 32297468)
    • (2001) IEEE Transactions on Power Systems , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 9
    • 33747418235 scopus 로고    scopus 로고
    • A neural network based several-hour-ahead electric load forecasting using similar days approach
    • DOI 10.1016/j.ijepes.2005.12.007, PII S0142061506000275
    • Mandal P., Senjyu T., Urasaki N., Funabashi T., A neural network based several-hour-ahead electric load forecasting using similar days approach. International Journal of Electrical Power and Energy Systems 2006 28 6 367 373 2-s2.0-33747418235 10.1016/j.ijepes.2005.12.007 (Pubitemid 44251071)
    • (2006) International Journal of Electrical Power and Energy Systems , vol.28 , Issue.6 , pp. 367-373
    • Mandal, P.1    Senjyu, T.2    Urasaki, N.3    Funabashi, T.4
  • 10
    • 60149107687 scopus 로고    scopus 로고
    • Applying wavelets to short-term load forecasting using PSO-based neural networks
    • 2-s2.0-60149107687 10.1109/TPWRS.2008.2008606
    • Bashir Z. A., El-Hawary M. E., Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Transactions on Power Systems 2009 24 1 20 27 2-s2.0-60149107687 10.1109/TPWRS.2008.2008606
    • (2009) IEEE Transactions on Power Systems , vol.24 , Issue.1 , pp. 20-27
    • Bashir, Z.A.1    El-Hawary, M.E.2
  • 11
    • 40749143065 scopus 로고    scopus 로고
    • Bayesian neural network approach to short time load forecasting
    • DOI 10.1016/j.enconman.2007.09.009, PII S0196890407003032
    • Lauret P., Fock E., Randrianarivony R. N., Manicom-Ramsamy J.-F., Bayesian neural network approach to short time load forecasting. Energy Conversion and Management 2008 49 5 1156 1166 2-s2.0-40749143065 10.1016/j.enconman.2007.09.009 (Pubitemid 351389577)
    • (2008) Energy Conversion and Management , vol.49 , Issue.5 , pp. 1156-1166
    • Lauret, P.1    Fock, E.2    Randrianarivony, R.N.3    Manicom-Ramsamy, J.-F.4
  • 12
    • 79953211586 scopus 로고    scopus 로고
    • A new neural network approach to short term load forecasting of electrical power systems
    • 2-s2.0-79953211586 10.3390/en4030488
    • Amjady N., Keynia F., A new neural network approach to short term load forecasting of electrical power systems. Energies 2011 4 3 488 503 2-s2.0-79953211586 10.3390/en4030488
    • (2011) Energies , vol.4 , Issue.3 , pp. 488-503
    • Amjady, N.1    Keynia, F.2
  • 14
    • 66449136989 scopus 로고    scopus 로고
    • Time series prediction using support vector machines: A survey
    • 2-s2.0-66449136989 10.1109/MCI.2009.932254
    • Sapankevych N., Sankar R., Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine 2009 4 2 24 38 2-s2.0-66449136989 10.1109/MCI.2009.932254
    • (2009) IEEE Computational Intelligence Magazine , vol.4 , Issue.2 , pp. 24-38
    • Sapankevych, N.1    Sankar, R.2
  • 15
    • 84871374413 scopus 로고    scopus 로고
    • Forecasting air passenger traffic by support vector machines with ensemble empirical mode decomposition and slope-based method
    • 431512 10.1155/2012/431512
    • Bao Y., Xiong T., Hu Z., Forecasting air passenger traffic by support vector machines with ensemble empirical mode decomposition and slope-based method. Discrete Dynamics in Nature and Society 2012 2012 12 431512 10.1155/2012/431512
    • (2012) Discrete Dynamics in Nature and Society , vol.2012 , pp. 12
    • Bao, Y.1    Xiong, T.2    Hu, Z.3
  • 16
    • 77953719971 scopus 로고    scopus 로고
    • Electric load forecasting based on locally weighted support vector regression
    • 2-s2.0-77953719971 10.1109/TSMCC.2010.2040176
    • Elattar E. E., Goulermas J., Wu Q. H., Electric load forecasting based on locally weighted support vector regression. IEEE Transactions on Systems, Man and Cybernetics C 2010 40 4 438 447 2-s2.0-77953719971 10.1109/TSMCC.2010. 2040176
    • (2010) IEEE Transactions on Systems, Man and Cybernetics C , vol.40 , Issue.4 , pp. 438-447
    • Elattar, E.E.1    Goulermas, J.2    Wu, Q.H.3
  • 17
    • 72649087088 scopus 로고    scopus 로고
    • A trend fixed on firstly and seasonal adjustment model combined with the ε -SVR for short-term forecasting of electricity demand
    • 2-s2.0-72649087088 10.1016/j.enpol.2009.06.046
    • Wang J., Zhu W., Zhang W., Sun D., A trend fixed on firstly and seasonal adjustment model combined with the ε -SVR for short-term forecasting of electricity demand. Energy Policy 2009 37 11 4901 4909 2-s2.0-72649087088 10.1016/j.enpol.2009.06.046
    • (2009) Energy Policy , vol.37 , Issue.11 , pp. 4901-4909
    • Wang, J.1    Zhu, W.2    Zhang, W.3    Sun, D.4
  • 18
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • DOI 10.1016/j.enconman.2005.02.004, PII S0196890405000506
    • Pai P.-F., Hong W.-C., Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management 2005 46 17 2669 2688 2-s2.0-18544377981 10.1016/j.enconman.2005.02.004 (Pubitemid 40654933)
    • (2005) Energy Conversion and Management , vol.46 , Issue.17 , pp. 2669-2688
    • Pai, P.-F.1    Hong, W.-C.2
  • 19
    • 84888287824 scopus 로고    scopus 로고
    • Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
    • Xiong T., Bao Y., Hu Z., Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge-Based Systems 2014 55 87 100
    • (2014) Knowledge-Based Systems , vol.55 , pp. 87-100
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 20
    • 84893774796 scopus 로고    scopus 로고
    • Multi-step-ahead time series prediction using multiple-output support vector regression
    • 10.1016/j.neucom.2013.09.010
    • Bao Y., Xiong T., Hu Z., Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 2013 10.1016/j.neucom.2013.09.010
    • (2013) Neurocomputing
    • Bao, Y.1    Xiong, T.2    Hu, Z.3
  • 21
    • 84855268589 scopus 로고    scopus 로고
    • Short-term load forecasting for electric power systems using the PSO-SVR and FCM clustering techniques
    • Duan P., Xie K. G., Guo T. T., Huang X. G., Short-term load forecasting for electric power systems using the PSO-SVR and FCM clustering techniques. Energies 2011 4 1 173 184
    • (2011) Energies , vol.4 , Issue.1 , pp. 173-184
    • Duan, P.1    Xie, K.G.2    Guo, T.T.3    Huang, X.G.4
  • 22
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S., Choosing multiple parameters for support vector machines. Machine Learning 2002 46 1-3 131 159 2-s2.0-0036161011 10.1023/A:1012450327387 (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 24
    • 84878941786 scopus 로고    scopus 로고
    • A PSO and pattern search based memetic algorithm for SVMs parameters optimization
    • Bao Y., Hu Z., Xiong T., A PSO and pattern search based memetic algorithm for SVMs parameters optimization. Neurocomputing 2013 117 98 106
    • (2013) Neurocomputing , vol.117 , pp. 98-106
    • Bao, Y.1    Hu, Z.2    Xiong, T.3
  • 25
    • 82455210873 scopus 로고    scopus 로고
    • Combining meta-learning and search techniques to select parameters for support vector machines
    • 2-s2.0-82455210873 10.1016/j.neucom.2011.07.005
    • Gomes T. A. F., Prud ĉ ncio R. B. C., Soares C., Rossi A. L. D., Carvalho A., Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 2012 75 1 3 13 2-s2.0-82455210873 10.1016/j.neucom.2011.07.005
    • (2012) Neurocomputing , vol.75 , Issue.1 , pp. 3-13
    • Gomes, T.A.F.1    Prud Ncioĉ, R.B.C.2    Soares, C.3    Rossi, A.L.D.4    Carvalho, A.5
  • 26
    • 84862777006 scopus 로고    scopus 로고
    • An annual load forecasting model based on support vector regression with differential evolution algorithm
    • 2-s2.0-84856799686 10.1016/j.apenergy.2012.01.010
    • Wang J., Li L., Niu D., Tan Z., An annual load forecasting model based on support vector regression with differential evolution algorithm. Applied Energy 2012 94 65 70 2-s2.0-84856799686 10.1016/j.apenergy.2012.01.010
    • (2012) Applied Energy , vol.94 , pp. 65-70
    • Wang, J.1    Li, L.2    Niu, D.3    Tan, Z.4
  • 27
    • 84870745105 scopus 로고    scopus 로고
    • Annual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm
    • Li H., Guo S., Zhao H., Su C., Wang B., Annual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm. Energies 2012 5 11 4430 4445
    • (2012) Energies , vol.5 , Issue.11 , pp. 4430-4445
    • Li, H.1    Guo, S.2    Zhao, H.3    Su, C.4    Wang, B.5
  • 28
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
    • DOI 10.1016/j.epsr.2005.01.006, PII S0378779605000702
    • Pai P.-F., Hong W.-C., Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electric Power Systems Research 2005 74 3 417 425 2-s2.0-18144394762 10.1016/j.epsr.2005.01.006 (Pubitemid 40612280)
    • (2005) Electric Power Systems Research , vol.74 , Issue.3 , pp. 417-425
    • Pai, P.-F.1    Hong, W.-C.2
  • 30
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • 2-s2.0-55749112476 10.1016/j.enconman.2008.08.031
    • Hong W.-C., Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Conversion and Management 2009 50 1 105 117 2-s2.0-55749112476 10.1016/j.enconman.2008.08.031
    • (2009) Energy Conversion and Management , vol.50 , Issue.1 , pp. 105-117
    • Hong, W.-C.1
  • 31
    • 80052103053 scopus 로고    scopus 로고
    • Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
    • 2-s2.0-80052103053 10.1016/j.energy.2011.07.015
    • Hong W.-C., Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy 2011 36 9 5568 5578 2-s2.0-80052103053 10.1016/j.energy.2011.07.015
    • (2011) Energy , vol.36 , Issue.9 , pp. 5568-5578
    • Hong, W.-C.1
  • 32
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • 2-s2.0-58249135669 10.1016/j.apm.2008.07.010
    • Hong W.-C., Electric load forecasting by support vector model. Applied Mathematical Modelling 2009 33 5 2444 2454 2-s2.0-58249135669 10.1016/j.apm.2008.07.010
    • (2009) Applied Mathematical Modelling , vol.33 , Issue.5 , pp. 2444-2454
    • Hong, W.-C.1
  • 33
    • 80052161756 scopus 로고    scopus 로고
    • SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting
    • 2-s2.0-80052161756 10.3390/en4060960
    • Hong W.-C., Dong Y., Lai C.-Y., Chen L.-Y., Wei S.-Y., SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting. Energies 2011 4 6 960 977 2-s2.0-80052161756 10.3390/en4060960
    • (2011) Energies , vol.4 , Issue.6 , pp. 960-977
    • Hong, W.-C.1    Dong, Y.2    Lai, C.-Y.3    Chen, L.-Y.4    Wei, S.-Y.5
  • 34
    • 84865413861 scopus 로고    scopus 로고
    • Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting
    • Zhang W. Y., Hong W. C., Dong Y. C., Tsai G., Sung J. T., Fan G. F., Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy 2012 45 1 850 858
    • (2012) Energy , vol.45 , Issue.1 , pp. 850-858
    • Zhang, W.Y.1    Hong, W.C.2    Dong, Y.C.3    Tsai, G.4    Sung, J.T.5    Fan, G.F.6
  • 35
    • 4544226146 scopus 로고    scopus 로고
    • Effective memetic algorithms for VLSI design = genetic algorithms + local search + multi-level clustering
    • DOI 10.1162/1063656041774947
    • Areibi S., Yang Z., Effective memetic algorithms for VLSI design = genetic algorithms + local search + multi-level clustering. Evolutionary Computation 2004 12 3 327 353 2-s2.0-4544226146 10.1162/1063656041774947 (Pubitemid 39212981)
    • (2004) Evolutionary Computation , vol.12 , Issue.3 , pp. 327-353
    • Areibi, S.1    Yang, Z.2
  • 36
    • 67650145870 scopus 로고    scopus 로고
    • A probabilistic memetic framework
    • 2-s2.0-67650145870 10.1109/TEVC.2008.2009460
    • Nguyen Q. H., Ong Y.-S., Lim M. H., A probabilistic memetic framework. IEEE Transactions on Evolutionary Computation 2009 13 3 604 623 2-s2.0-67650145870 10.1109/TEVC.2008.2009460
    • (2009) IEEE Transactions on Evolutionary Computation , vol.13 , Issue.3 , pp. 604-623
    • Nguyen, Q.H.1    Ong, Y.-S.2    Lim, M.H.3
  • 37
    • 77749286227 scopus 로고    scopus 로고
    • Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization
    • 2-s2.0-77749286227 10.1162/evco.2010.18.1.18105
    • Elhossini A., Areibi S., Dony R., Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization. Evolutionary Computation 2010 18 1 127 156 2-s2.0-77749286227 10.1162/evco.2010.18.1.18105
    • (2010) Evolutionary Computation , vol.18 , Issue.1 , pp. 127-156
    • Elhossini, A.1    Areibi, S.2    Dony, R.3
  • 38
    • 77951278725 scopus 로고    scopus 로고
    • Memetic computation - Past, present & future [research frontier]
    • 10.1109/MCI.2010.936309
    • Ong Y.-S., Lim M. H., Chen X., Memetic computation-past, present & future [research frontier]. IEEE Computational Intelligence Magazine 2010 5 2 24 31 10.1109/MCI.2010.936309
    • (2010) IEEE Computational Intelligence Magazine , vol.5 , Issue.2 , pp. 24-31
    • Ong, Y.-S.1    Lim, M.H.2    Chen, X.3
  • 39
    • 34247380230 scopus 로고    scopus 로고
    • Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems
    • DOI 10.1007/s00500-006-0139-6
    • Tang J., Lim M. H., Ong Y. S., Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Computing 2007 11 9 873 888 2-s2.0-34247380230 10.1007/s00500-006-0139-6 (Pubitemid 46637827)
    • (2007) Soft Computing , vol.11 , Issue.9 , pp. 873-888
    • Tang, J.1    Lim, M.H.2    Ong, Y.S.3
  • 42
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • DOI 10.1016/S0305-0483(01)00026-3, PII S0305048301000263
    • Tay F. E. H., Cao L., Application of support vector machines in financial time series forecasting. Omega 2001 29 4 309 317 2-s2.0-0001023715 10.1016/S0305-0483(01)00026-3 (Pubitemid 33628757)
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 44
    • 84855278833 scopus 로고    scopus 로고
    • Memetic algorithms and memetic computing optimization: A literature review
    • 2-s2.0-84855278833 10.1016/j.swevo.2011.11.003
    • Neri F., Cotta C., Memetic algorithms and memetic computing optimization: a literature review. Swarm and Evolutionary Computation 2012 2 1 14 2-s2.0-84855278833 10.1016/j.swevo.2011.11.003
    • (2012) Swarm and Evolutionary Computation , vol.2 , pp. 1-14
    • Neri, F.1    Cotta, C.2
  • 45
    • 80054688019 scopus 로고    scopus 로고
    • A multi-facet survey on memetic computation
    • 2-s2.0-80054688019 10.1109/TEVC.2011.2132725
    • Chen X., Ong Y.-S., Lim M.-H., Tan K. C., A multi-facet survey on memetic computation. IEEE Transactions on Evolutionary Computation 2011 15 5 591 607 2-s2.0-80054688019 10.1109/TEVC.2011.2132725
    • (2011) IEEE Transactions on Evolutionary Computation , vol.15 , Issue.5 , pp. 591-607
    • Chen, X.1    Ong, Y.-S.2    Lim, M.-H.3    Tan, K.C.4
  • 47
    • 84855993522 scopus 로고    scopus 로고
    • Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect
    • 2-s2.0-84855993522 10.1016/j.asoc.2011.09.017
    • Yang X.-S., Hosseini S. S. S., Gandomi A. H., Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing Journal 2012 12 3 1180 1186 2-s2.0-84855993522 10.1016/j.asoc.2011.09.017
    • (2012) Applied Soft Computing Journal , vol.12 , Issue.3 , pp. 1180-1186
    • Yang, X.-S.1    Hosseini, S.S.S.2    Gandomi, A.H.3
  • 48
    • 84872858631 scopus 로고    scopus 로고
    • Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective UCP
    • Chandrasekaran K., Simon S. P., Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective UCP. IEEE Transactions on Power Systems 2013 28 1 460 471
    • (2013) IEEE Transactions on Power Systems , vol.28 , Issue.1 , pp. 460-471
    • Chandrasekaran, K.1    Simon, S.P.2
  • 49
    • 0033895382 scopus 로고    scopus 로고
    • Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • Mckay M. D., Beckman R. J., Conover W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000 42 1 55 61 2-s2.0-0033895382 (Pubitemid 30553341)
    • (2000) Technometrics , vol.42 , Issue.1 , pp. 55-61
    • Mckay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 51
    • 2442576133 scopus 로고    scopus 로고
    • On the local convergence of pattern search
    • DOI 10.1137/S1052623400374495
    • Dolan E. D., Lewis R. M., Torczon V., On the local convergence of pattern search. SIAM Journal on Optimization 2003 14 2 567 583 2-s2.0-2442576133 10.1137/S1052623400374495 (Pubitemid 38614151)
    • (2004) SIAM Journal on Optimization , vol.14 , Issue.2 , pp. 567-583
    • Dolan, E.D.1    Lewis, R.M.2    Torczon, V.3
  • 52
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • DOI 10.1016/j.ijforecast.2006.03.001, PII S0169207006000239
    • Hyndman R. J., Koehler A. B., Another look at measures of forecast accuracy. International Journal of Forecasting 2006 22 4 679 688 2-s2.0-33749517168 10.1016/j.ijforecast.2006.03.001 (Pubitemid 44524717)
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 53
    • 0002006114 scopus 로고
    • Error measures for generalizing about forecasting methods: Empirical comparisons
    • 2-s2.0-0002006114
    • Armstrong J. S., Collopy F., Error measures for generalizing about forecasting methods: empirical comparisons. International Journal of Forecasting 1992 8 1 69 80 2-s2.0-0002006114
    • (1992) International Journal of Forecasting , vol.8 , Issue.1 , pp. 69-80
    • Armstrong, J.S.1    Collopy, F.2
  • 56
    • 34548170754 scopus 로고    scopus 로고
    • Methodology for long-term prediction of time series
    • DOI 10.1016/j.neucom.2006.06.015, PII S0925231207001610
    • Sorjamaa A., Hao J., Reyhani N., Ji Y., Lendasse A., Methodology for long-term prediction of time series. Neurocomputing 2007 70 16-18 2861 2869 2-s2.0-34548170754 10.1016/j.neucom.2006.06.015 (Pubitemid 47308638)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2861-2869
    • Sorjamaa, A.1    Hao, J.2    Reyhani, N.3    Ji, Y.4    Lendasse, A.5
  • 57
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series forecasting: The forecast package for R
    • 2-s2.0-48749112805
    • Hyndman R. J., Khandakar Y., Automatic time series forecasting: the forecast package for R. Journal of Statistical Software 2008 27 3 1 22 2-s2.0-48749112805
    • (2008) Journal of Statistical Software , vol.27 , Issue.3 , pp. 1-22
    • Hyndman, R.J.1    Khandakar, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.