메뉴 건너뛰기




Volumn 86, Issue , 2014, Pages 8-15

Enhancement of hydrolytic activity of thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 through optimization of amino acid residues surrounding the substrate binding site

Author keywords

Amylase; Enzyme activity; Enzyme production; Glycoside hydrolase family 13; Mutagenesis; Starch

Indexed keywords

AMINO ACIDS; BACTERIOLOGY; ENZYME ACTIVITY; MUTAGENESIS; OPTIMIZATION; STARCH;

EID: 84896140132     PISSN: 1369703X     EISSN: 1873295X     Source Type: Journal    
DOI: 10.1016/j.bej.2014.02.014     Document Type: Article
Times cited : (7)

References (31)
  • 2
    • 33845665889 scopus 로고    scopus 로고
    • Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins
    • Stam M.R., Danchin E.G., Rancurel C., Coutinho P.M., Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng., Des. Sel. 2006, 19:555-562.
    • (2006) Protein Eng., Des. Sel. , vol.19 , pp. 555-562
    • Stam, M.R.1    Danchin, E.G.2    Rancurel, C.3    Coutinho, P.M.4    Henrissat, B.5
  • 3
    • 84863473157 scopus 로고    scopus 로고
    • Cloning and characterization of two new thermostable and alkalitolerant α-amylaes from the Anoxybacillus species that produce high levels of maltose
    • Chai Y.Y., Rahman R.N., Illias R.M., Goh K.M. Cloning and characterization of two new thermostable and alkalitolerant α-amylaes from the Anoxybacillus species that produce high levels of maltose. J. Ind. Microbiol. Biotechnol. 2012, 39:731-741.
    • (2012) J. Ind. Microbiol. Biotechnol. , vol.39 , pp. 731-741
    • Chai, Y.Y.1    Rahman, R.N.2    Illias, R.M.3    Goh, K.M.4
  • 4
    • 84871118741 scopus 로고    scopus 로고
    • Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme
    • Puspasari F., Radjasa O.K., Noer A.S., Nurachman Z., Syah Y.M., van der Maarel M., Dijkhuizen L., Janeček Š., Natalia D. Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J. Appl. Microbiol. 2012, 114:108-120.
    • (2012) J. Appl. Microbiol. , vol.114 , pp. 108-120
    • Puspasari, F.1    Radjasa, O.K.2    Noer, A.S.3    Nurachman, Z.4    Syah, Y.M.5    van der Maarel, M.6    Dijkhuizen, L.7    Janeček, Š.8    Natalia, D.9
  • 5
    • 80052867726 scopus 로고    scopus 로고
    • Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov
    • Finore I., Kasavi C., Poli A., Romano I., Oner E.T., Kierdar B., Dipasquale L., Nicolaus B., Lama L. Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. World J. Microbiol. Biotechnol. 2011, 27:2425-2433.
    • (2011) World J. Microbiol. Biotechnol. , vol.27 , pp. 2425-2433
    • Finore, I.1    Kasavi, C.2    Poli, A.3    Romano, I.4    Oner, E.T.5    Kierdar, B.6    Dipasquale, L.7    Nicolaus, B.8    Lama, L.9
  • 6
    • 0035831255 scopus 로고    scopus 로고
    • Relationship of sequence and structure to specificity in the α-amylase family of enzymes
    • MacGregor E.A., Janecek S., Svensson B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 2001, 1546:1-20.
    • (2001) Biochim. Biophys. Acta , vol.1546 , pp. 1-20
    • MacGregor, E.A.1    Janecek, S.2    Svensson, B.3
  • 7
    • 0032142727 scopus 로고    scopus 로고
    • Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures
    • Ito S., Kobayashi T., Ara K., Ozaki K., Kawai S., Hatada Y. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 1998, 2:185-190.
    • (1998) Extremophiles , vol.2 , pp. 185-190
    • Ito, S.1    Kobayashi, T.2    Ara, K.3    Ozaki, K.4    Kawai, S.5    Hatada, Y.6
  • 8
    • 84954949965 scopus 로고
    • Production of alkaline enzymes by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus No. A-40-2
    • Horikoshi K. Production of alkaline enzymes by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus No. A-40-2. Agric. Biol. Chem. 1971, 35:1783-1791.
    • (1971) Agric. Biol. Chem. , vol.35 , pp. 1783-1791
    • Horikoshi, K.1
  • 9
    • 13144305048 scopus 로고    scopus 로고
    • Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad
    • Machius M., Declerck N., Huber R., Wiegand G. Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 1998, 6:281-292.
    • (1998) Structure , vol.6 , pp. 281-292
    • Machius, M.1    Declerck, N.2    Huber, R.3    Wiegand, G.4
  • 10
    • 0035318737 scopus 로고    scopus 로고
    • Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38
    • Hagihara H., Igarashi K., Hayashi Y., Endo K., Ikawa-Kitayama K., Ozaki K., Kawai S., Ito S. Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol. 2001, 67:1744-1750.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 1744-1750
    • Hagihara, H.1    Igarashi, K.2    Hayashi, Y.3    Endo, K.4    Ikawa-Kitayama, K.5    Ozaki, K.6    Kawai, S.7    Ito, S.8
  • 11
    • 0034836495 scopus 로고    scopus 로고
    • Deduced amino-acid sequence of a calcium-free α-amylase from a strain of Bacillus. Implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme
    • Hagihara H., Hayashi Y., Endo K., Igarashi K., Ozawa T., Kawai S., Ozaki K., Ito S. Deduced amino-acid sequence of a calcium-free α-amylase from a strain of Bacillus. Implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme. Eur. J. Biochem. 2001, 268:3974-3982.
    • (2001) Eur. J. Biochem. , vol.268 , pp. 3974-3982
    • Hagihara, H.1    Hayashi, Y.2    Endo, K.3    Igarashi, K.4    Ozawa, T.5    Kawai, S.6    Ozaki, K.7    Ito, S.8
  • 12
    • 0042090311 scopus 로고    scopus 로고
    • Crystal structure of calcium-free α-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites
    • Nonaka T., Fujihashi M., Kita A., Hagihara H., Ozaki K., Ito S., Miki K. Crystal structure of calcium-free α-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites. J. Biol. Chem. 2003, 278:24818-24824.
    • (2003) J. Biol. Chem. , vol.278 , pp. 24818-24824
    • Nonaka, T.1    Fujihashi, M.2    Kita, A.3    Hagihara, H.4    Ozaki, K.5    Ito, S.6    Miki, K.7
  • 14
    • 84884617803 scopus 로고    scopus 로고
    • Thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 has a novel domain organization of glycoside hydrolase family 13 enzymes
    • Saburi W., Morimoto N., Mukai A., Kim D.H., Takehana T., Koike S., Matsui H., Mori H. Thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 has a novel domain organization of glycoside hydrolase family 13 enzymes. Biosci. Biotechnol. Biochem. 2013, 77:1867-1873.
    • (2013) Biosci. Biotechnol. Biochem. , vol.77 , pp. 1867-1873
    • Saburi, W.1    Morimoto, N.2    Mukai, A.3    Kim, D.H.4    Takehana, T.5    Koike, S.6    Matsui, H.7    Mori, H.8
  • 15
    • 80054683038 scopus 로고    scopus 로고
    • Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals
    • Janeček Š., Svensson B., MacGregor E.A. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb. Technol. 2011, 49:429-440.
    • (2011) Enzyme Microb. Technol. , vol.49 , pp. 429-440
    • Janeček, Š.1    Svensson, B.2    MacGregor, E.A.3
  • 16
    • 0033574502 scopus 로고    scopus 로고
    • Crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6Å resolution
    • Kamitori S., Kondo S., Okuyama K., Yokota T., Shimura Y., Tonozuka T., Sakano Y. Crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6Å resolution. J. Mol. Biol. 1999, 287:907-921.
    • (1999) J. Mol. Biol. , vol.287 , pp. 907-921
    • Kamitori, S.1    Kondo, S.2    Okuyama, K.3    Yokota, T.4    Shimura, Y.5    Tonozuka, T.6    Sakano, Y.7
  • 17
    • 0036304348 scopus 로고    scopus 로고
    • Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 α-amylase 1 (TVAI) at 1.6Å resolution and α-amylase 2 (TVAII) at 2.3Å resolution
    • Kamitori S., Abe A., Ohtaki A., Kaji A., Tonozuka T., Sakano Y. Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 α-amylase 1 (TVAI) at 1.6Å resolution and α-amylase 2 (TVAII) at 2.3Å resolution. J. Mol. Biol. 2002, 318:443-453.
    • (2002) J. Mol. Biol. , vol.318 , pp. 443-453
    • Kamitori, S.1    Abe, A.2    Ohtaki, A.3    Kaji, A.4    Tonozuka, T.5    Sakano, Y.6
  • 18
    • 0037423706 scopus 로고    scopus 로고
    • Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase
    • Hondoh H., Kuriki T., Matsuura Y. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J. Mol. Biol. 2003, 326:177-188.
    • (2003) J. Mol. Biol. , vol.326 , pp. 177-188
    • Hondoh, H.1    Kuriki, T.2    Matsuura, Y.3
  • 19
    • 63849246525 scopus 로고    scopus 로고
    • Protein structure prediction on the Web: a case study using the Phyre server
    • Kelley L.A., Sternberg M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 2009, 4:363-371.
    • (2009) Nat. Protoc. , vol.4 , pp. 363-371
    • Kelley, L.A.1    Sternberg, M.J.E.2
  • 21
    • 33747333106 scopus 로고
    • Use of dinitrosalicylic acid reagent for determination of reducing sugar
    • Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31:426-428.
    • (1959) Anal. Chem. , vol.31 , pp. 426-428
    • Miller, G.L.1
  • 22
    • 1542495429 scopus 로고    scopus 로고
    • Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain
    • Abe A., Tonozuka T., Sakano Y., Kamitori S. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 2004, 335:811-822.
    • (2004) J. Mol. Biol. , vol.335 , pp. 811-822
    • Abe, A.1    Tonozuka, T.2    Sakano, Y.3    Kamitori, S.4
  • 23
    • 33646158199 scopus 로고    scopus 로고
    • Structure of a complex of Thermoactinomyces vulgaris R-47 α-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft
    • Ohtaki A., Mizuno M., Yoshida H., Tonozuka T., Sakano Y., Kamitori S. Structure of a complex of Thermoactinomyces vulgaris R-47 α-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Carbohydr. Res. 2006, 341:1041-1046.
    • (2006) Carbohydr. Res. , vol.341 , pp. 1041-1046
    • Ohtaki, A.1    Mizuno, M.2    Yoshida, H.3    Tonozuka, T.4    Sakano, Y.5    Kamitori, S.6
  • 24
    • 33745119485 scopus 로고    scopus 로고
    • Structural elements in dextran glucosidase responsible for high specificity to long chain substrate
    • Saburi W., Mori H., Saito S., Okuyama M., Kimura A. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim. Biophys. Acta 2006, 1764:688-698.
    • (2006) Biochim. Biophys. Acta , vol.1764 , pp. 688-698
    • Saburi, W.1    Mori, H.2    Saito, S.3    Okuyama, M.4    Kimura, A.5
  • 25
    • 41949139216 scopus 로고    scopus 로고
    • Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans
    • Hondo H., Saburi W., Mori H., Okuyama M., Nakada T., Matsuura Y., Kimura A. Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J. Mol. Biol. 2008, 378:911-920.
    • (2008) J. Mol. Biol. , vol.378 , pp. 911-920
    • Hondo, H.1    Saburi, W.2    Mori, H.3    Okuyama, M.4    Nakada, T.5    Matsuura, Y.6    Kimura, A.7
  • 26
    • 84872127693 scopus 로고    scopus 로고
    • Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases
    • Majzlová K., pukajová Z., Janeček S. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr. Res. 2013, 367:48-57.
    • (2013) Carbohydr. Res. , vol.367 , pp. 48-57
    • Majzlová, K.1    Pukajová, Z.2    Janeček, S.3
  • 27
    • 33646205656 scopus 로고    scopus 로고
    • Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition
    • Sivakumar N., Li N., Tang J.W., Patel B.K., Swaminathan K. Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett. 2006, 580:2646-2652.
    • (2006) FEBS Lett. , vol.580 , pp. 2646-2652
    • Sivakumar, N.1    Li, N.2    Tang, J.W.3    Patel, B.K.4    Swaminathan, K.5
  • 28
    • 0031888533 scopus 로고    scopus 로고
    • Conversion of neopullulanase-α-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulnase-type enzyme
    • Ibuka A., Tonozuka T., Matsuzawa H., Sakai H. Conversion of neopullulanase-α-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulnase-type enzyme. J. Biochem. 1998, 123:275-282.
    • (1998) J. Biochem. , vol.123 , pp. 275-282
    • Ibuka, A.1    Tonozuka, T.2    Matsuzawa, H.3    Sakai, H.4
  • 29
    • 0036439021 scopus 로고    scopus 로고
    • Barley α-amylase Met53 situated at the high-affinity subsite -2 belongs to a substrate binding motif in the β→α loop 2 of the catalytic (β/α)8-barrel and is critical for activity and substrate specificity
    • Mori H., Bak-Jensen K.S., Svensson B. Barley α-amylase Met53 situated at the high-affinity subsite -2 belongs to a substrate binding motif in the β→α loop 2 of the catalytic (β/α)8-barrel and is critical for activity and substrate specificity. Eur. J. Biol. 2002, 269:5377-5390.
    • (2002) Eur. J. Biol. , vol.269 , pp. 5377-5390
    • Mori, H.1    Bak-Jensen, K.S.2    Svensson, B.3
  • 31
    • 33846218264 scopus 로고    scopus 로고
    • Ancestral sequence evolutionary trace and crystal structure analyses of alkaline α-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins
    • Shirai T., Igarashi K., Ozawa T., Hagihara H., Kobayashi T., Ozaki K., Ito S. Ancestral sequence evolutionary trace and crystal structure analyses of alkaline α-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins 2007, 66:600-610.
    • (2007) Proteins , vol.66 , pp. 600-610
    • Shirai, T.1    Igarashi, K.2    Ozawa, T.3    Hagihara, H.4    Kobayashi, T.5    Ozaki, K.6    Ito, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.