메뉴 건너뛰기




Volumn , Issue , 2013, Pages 281-290

Classification of multi-dimensional streaming time series by weighting each classifier's track record

Author keywords

classification; multi dimensional time series

Indexed keywords


EID: 84894648193     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2013.33     Document Type: Conference Paper
Times cited : (31)

References (46)
  • 1
    • 0000068589 scopus 로고
    • The making of maximum likelihood 1912-1922
    • J. Aldrich, R.A. Fisher and the making of maximum likelihood 1912-1922, Statistical Science, 12(3), 1922.
    • (1922) Statistical Science , vol.12 , Issue.3
    • Aldrich, J.1    Fisher, R.A.2
  • 2
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effective of voting methods
    • p. Bartlett, Y. Freund, W. Lee and R. Schapire, Boosting the Margin: A New Explanation for the Effective of Voting methods, The Annals of Statistics, vol(26),1998.
    • (1998) The Annals of Statistics , vol.26
    • Bartlett, P.1    Freund, Y.2    Lee, W.3    Schapire, R.4
  • 3
    • 0001931577 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi, An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting and Variants, Journal of Machine Learning, 1998.
    • (1998) Journal of Machine Learning
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 77951191695 scopus 로고    scopus 로고
    • Audio classification of bird species: A statistical manifold approach
    • F. Briggs, R. Raich and X. Fern, Audio Classification of Bird Species: a Statistical Manifold Approach, ICDM, 2009.
    • (2009) ICDM
    • Briggs, F.1    Raich, R.2    Fern, X.3
  • 8
    • 84964561483 scopus 로고    scopus 로고
    • DTW-D, Time series semi-supervised learning from a single example
    • Y. Chen, B. Hu, E. Keogh and G. E.A.p. A Batista, DTW-D, Time Series Semi-Supervised Learning from a Single Example, KDD, 2013
    • (2013) KDD
    • Chen, Y.1    Hu, B.2    Keogh, E.3    Batista, G.E.A.P.A.4
  • 9
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, p. Scheuermann, X. Wang and E. Keogh, Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures, PVLDB 1(2): 1542-1552, 2008.
    • (2008) PVLDB , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 10
    • 0031269184 scopus 로고    scopus 로고
    • Beyond independence: Condition for the optimality of thhe simple bayesian classifier
    • p. Domingos and M. Pazzani, Beyond Independence: Condition for the Optimality of thhe Simple Bayesian Classifier, Machine Learning, vol(29), p(103-137), 1997.
    • (1997) Machine Learning , vol.29 , pp. 103-137
    • Domingos, P.1    Pazzani, M.2
  • 11
    • 84894674548 scopus 로고    scopus 로고
    • Digital Interaction at Culture Lab, accessed on Jan 9
    • Digital Interaction at Culture Lab, di.ncl.ac.uk/publicweb/Ambient Kitchen/, accessed on Jan 9, 2013.
    • (2013)
  • 12
  • 14
    • 84866030149 scopus 로고    scopus 로고
    • Subspace correlation clustering: Finding locally correlated dimensions in subspace projections of the data
    • S. Günnemann, I. Färber, K. Virochsiri, and T. Seidl, Subspace Correlation Clustering: Finding Locally Correlated Dimensions in Subspace Projections of the Data, KDD, 2012.
    • (2012) KDD
    • Günnemann, S.1    Färber, I.2    Virochsiri, K.3    Seidl, T.4
  • 15
    • 84960076541 scopus 로고    scopus 로고
    • Time series classification under more realistic assumptions
    • B. Hu, Y. Chen and E. Keogh, Time Series Classification under More Realistic Assumptions, SDM, 2013.
    • (2013) SDM
    • Hu, B.1    Chen, Y.2    Keogh, E.3
  • 16
    • 84857158294 scopus 로고    scopus 로고
    • Discovering the Intrinsic Cardinality and Dimensionality of Time Series using MDL
    • B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, E. Keogh, Discovering the Intrinsic Cardinality and Dimensionality of Time Series using MDL, ICDM, 2011
    • (2011) ICDM
    • Hu, B.1    Rakthanmanon, T.2    Hao, Y.3    Evans, S.4    Lonardi, S.5    Keogh, E.6
  • 20
    • 84874097930 scopus 로고    scopus 로고
    • Mining of temporal coherent subspace clusters in multivariate time series databases
    • H. Kremer, S. Günnemann, A. Held and T. Seidl, Mining of Temporal Coherent Subspace Clusters in Multivariate Time Series Databases, PAKDD, 2012.
    • (2012) PAKDD
    • Kremer, H.1    Günnemann, S.2    Held, A.3    Seidl, T.4
  • 22
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • J. Kolter and M. Maloof, Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift, ICDM, 2003.
    • (2003) ICDM
    • Kolter, J.1    Maloof, M.2
  • 23
    • 77951101947 scopus 로고    scopus 로고
    • A $3 gesture recognizer -simple gesture recognition for devices equipped with 3d acceleration sensors
    • S. Kratz and M. Rohs, A $3 Gesture Recognizer -Simple Gesture Recognition for Devices Equipped with 3D Acceleration Sensors, IUI, 2010.
    • (2010) IUI
    • Kratz, S.1    Rohs, M.2
  • 28
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R.E. Schapire, and Y. Singer, Improved Boosting Algorithms using Confidence-rated Predictions, Journal of Machine Learning, 1999.
    • (1999) Journal of Machine Learning
    • Schapire, R.E.1    Singer, Y.2
  • 29
    • 0346660758 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (SEA) for large-scale classification
    • W. Street and Y. Kim, A Streaming Ensemble Algorithm (SEA) for Large-Scale Classification, KDD, 2001.
    • (2001) KDD
    • Street, W.1    Kim, Y.2
  • 31
    • 0000476855 scopus 로고    scopus 로고
    • Feature selection for ensembles
    • D. Optitz, Feature Selection for Ensembles, AAAI, 1999
    • (1999) AAAI
    • Optitz, D.1
  • 32
    • 84879888269 scopus 로고    scopus 로고
    • Time series classification in many intrinsic dimensions
    • M. Radovanović, A. Nanopoulos and M. Ivanović, Time Series Classification in Many Intrinsic Dimensions, SDM, 2010.
    • (2010) SDM
    • Radovanović, M.1    Nanopoulos, A.2    Ivanović, M.3
  • 34
    • 84055192810 scopus 로고    scopus 로고
    • Introducing a modular activity monitoring system
    • A. Reiss and D. Stricker, Introducing a Modular Activity Monitoring System, 33rd IEEE EMBS,2011.
    • (2011) 33rd IEEE EMBS
    • Reiss, A.1    Stricker, D.2
  • 36
    • 77952414056 scopus 로고    scopus 로고
    • Indexing multi-dimensional time series with support for multiple distance measures
    • M. Vlachos, M. Hadjieleftheriou, D. Gunopulos and E. Keogh, Indexing Multi-Dimensional Time Series with Support for Multiple Distance Measures, KDD, 2003.
    • (2003) KDD
    • Vlachos, M.1    Hadjieleftheriou, M.2    Gunopulos, D.3    Keogh, E.4
  • 39
    • 84872397385 scopus 로고    scopus 로고
    • Experimental comparison of representation methods and distance measures for time series data
    • X. Wang, A. Mueen, H. Ding, G. Trajcevski, p. Scheuermann, E. Keogh, Experimental comparison of representation methods and distance measures for time series data. DMKD, vol26(2), 2013.
    • (2013) DMKD , vol.26 , Issue.2
    • Wang, X.1    Mueen, A.2    Ding, H.3    Trajcevski, G.4    Scheuermann, P.5    Keogh, E.6
  • 40
    • 33645471785 scopus 로고    scopus 로고
    • Feature subset selection and feature ranking for multivariate time series
    • H. Yoon, K. Yang, C. Shahabi, Feature Subset Selection and Feature Ranking for Multivariate Time Series, IEEE Trans. Knowl. Data Eng. 17(9): 1186-1198, 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.9 , pp. 1186-1198
    • Yoon, H.1    Yang, K.2    Shahabi, C.3
  • 42
    • 34548591821 scopus 로고    scopus 로고
    • Integrating hidden markov models and spectral analysis for sensory time series clustering
    • J. Yin and Q. Yang, Integrating Hidden Markov Models and Spectral Analysis for Sensory Time Series Clustering, ICDM, 2005.
    • (2005) ICDM
    • Yin, J.1    Yang, Q.2
  • 44
    • 84879491205 scopus 로고    scopus 로고
    • USC-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors
    • M. Zhang and A.A. Sawchuk, USC-HAD: A Daily Activity Dataset for Ubiquitous Activity Recognition Using Wearable Sensors, Ubi Comp, 2012.
    • (2012) Ubi Comp
    • Zhang, M.1    Sawchuk, A.A.2
  • 46
    • 84894657139 scopus 로고    scopus 로고
    • Project webpage
    • Project webpage: sites.google.com/site/mtdtsadc/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.