메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1-249

System Parameter Identification: Information Criteria and Algorithms

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84894584520     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/C2012-0-01233-1     Document Type: Book
Times cited : (179)

References (240)
  • 1
    • 0000515054 scopus 로고
    • From circuit theory to system theory
    • Zadeh L.A. From circuit theory to system theory. Proc. IRE 1962, 50(5):856-865.
    • (1962) Proc. IRE , vol.50 , Issue.5 , pp. 856-865
    • Zadeh, L.A.1
  • 3
    • 0018021189 scopus 로고
    • Convergence analysis of parametric identification methods
    • Ljung L. Convergence analysis of parametric identification methods. IEEE Trans. Automat. Control 1978, 23:770-783.
    • (1978) IEEE Trans. Automat. Control , vol.23 , pp. 770-783
    • Ljung, L.1
  • 5
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • Zhang P. Model selection via multifold cross validation. Ann. Stat. 1993, 299-313.
    • (1993) Ann. Stat. , pp. 299-313
    • Zhang, P.1
  • 6
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle, Proceedings of the Second International Symposium on Information Theory
    • H. Akaike, Information theory and an extension of the maximum likelihood principle, Proceedings of the Second International Symposium on Information Theory, 1973, pp. 267-281.
    • (1973) , pp. 267-281
    • Akaike, H.1
  • 7
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19(6):716-723.
    • (1974) IEEE Trans. Automat. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 8
    • 85013915441 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978, 6:461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 9
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica 1978, 14:465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 10
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • Barron A., Rissanen J., Yu B. The minimum description length principle in coding and modeling. IEEE Trans. Inf. Theory 1998, 44(6):2743-2760.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 11
    • 34247473772 scopus 로고    scopus 로고
    • Robust optimal experiment design for system identification
    • Rojas C.R., Welsh J.S., Goodwin G.C., Feuer A. Robust optimal experiment design for system identification. Automatica 2007, 43(6):993-1008.
    • (2007) Automatica , vol.43 , Issue.6 , pp. 993-1008
    • Rojas, C.R.1    Welsh, J.S.2    Goodwin, G.C.3    Feuer, A.4
  • 15
    • 0000068589 scopus 로고    scopus 로고
    • R. A. Fisher and the making of maximum likelihood 1912-1922
    • Aldrich J. R. A. Fisher and the making of maximum likelihood 1912-1922. Stat. Sci. 1997, 12(3):162-176.
    • (1997) Stat. Sci. , vol.12 , Issue.3 , pp. 162-176
    • Aldrich, J.1
  • 16
    • 0043226670 scopus 로고    scopus 로고
    • On the history of maximum likelihood in relation to inverse probability and least squares
    • Hald A. On the history of maximum likelihood in relation to inverse probability and least squares. Stat. Sci. 1999, 14(2):214-222.
    • (1999) Stat. Sci. , vol.14 , Issue.2 , pp. 214-222
    • Hald, A.1
  • 19
  • 20
    • 2442495545 scopus 로고    scopus 로고
    • Wiley, New York, S.S. Haykin, B. Widrow (Eds.)
    • Least-Mean-Square Adaptive Filters 2003, Wiley, New York. S.S. Haykin, B. Widrow (Eds.).
    • (2003) Least-Mean-Square Adaptive Filters
  • 21
    • 0000989949 scopus 로고
    • Non-mean-square error criteria
    • Sherman S. Non-mean-square error criteria. IRE Trans. Inf. Theory 1958, 4:125-126.
    • (1958) IRE Trans. Inf. Theory , vol.4 , pp. 125-126
    • Sherman, S.1
  • 22
    • 33747661993 scopus 로고
    • Asymmetric non-mean-square error criteria
    • Brown J.L. Asymmetric non-mean-square error criteria. IRE Trans. Automat. Control 1962, 7:64-66.
    • (1962) IRE Trans. Automat. Control , vol.7 , pp. 64-66
    • Brown, J.L.1
  • 23
    • 84938007150 scopus 로고
    • General error criteria
    • Zakai M. General error criteria. IEEE Trans. Inf. Theory 1964, 10(1):94-95.
    • (1964) IEEE Trans. Inf. Theory , vol.10 , Issue.1 , pp. 94-95
    • Zakai, M.1
  • 24
    • 0026156870 scopus 로고
    • On optimal estimation with respect to a large family of cost function
    • Hall E.B., Wise G.L. On optimal estimation with respect to a large family of cost function. IEEE Trans. Inf. Theory 1991, 37(3):691-693.
    • (1991) IEEE Trans. Inf. Theory , vol.37 , Issue.3 , pp. 691-693
    • Hall, E.B.1    Wise, G.L.2
  • 26
    • 0021392489 scopus 로고
    • The least mean fourth (LMF) adaptive algorithm and its family
    • Walach E., Widrow B. The least mean fourth (LMF) adaptive algorithm and its family. IEEE. Trans. Inf. Theory 1984, 30(2):275-283.
    • (1984) IEEE. Trans. Inf. Theory , vol.30 , Issue.2 , pp. 275-283
    • Walach, E.1    Widrow, B.2
  • 27
    • 0022228097 scopus 로고
    • On high-order error criteria for system identification
    • Walach E. On high-order error criteria for system identification. IEEE Trans. Acoust. 1985, 33(6):1634-1635.
    • (1985) IEEE Trans. Acoust. , vol.33 , Issue.6 , pp. 1634-1635
    • Walach, E.1
  • 28
    • 0028445459 scopus 로고
    • Stochastic gradient adaptation under general error criteria
    • Douglas S.C., Meng T.H.Y. Stochastic gradient adaptation under general error criteria. IEEE Trans. Signal Process 1994, 42:1335-1351.
    • (1994) IEEE Trans. Signal Process , vol.42 , pp. 1335-1351
    • Douglas, S.C.1    Meng, T.H.Y.2
  • 29
    • 0035556176 scopus 로고    scopus 로고
    • Adaptive filters with error nonlinearities: mean-square analysis and optimum design
    • Al-Naffouri T.Y., Sayed A.H. Adaptive filters with error nonlinearities: mean-square analysis and optimum design. EURASIP J. Appl. Signal. Process 2001, 4:192-205.
    • (2001) EURASIP J. Appl. Signal. Process , vol.4 , pp. 192-205
    • Al-Naffouri, T.Y.1    Sayed, A.H.2
  • 30
    • 0028728699 scopus 로고
    • Least mean p-power error criterion for adaptive FIR filter
    • Pei S.C., Tseng C.C. Least mean p-power error criterion for adaptive FIR filter. IEEE J. Sel. Areas Commun. 1994, 12(9):1540-1547.
    • (1994) IEEE J. Sel. Areas Commun. , vol.12 , Issue.9 , pp. 1540-1547
    • Pei, S.C.1    Tseng, C.C.2
  • 31
    • 0027624516 scopus 로고
    • Signal processing with fractional lower order moments: stable processes and their applications
    • Shao M., Nikias C.L. Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE 1993, 81(7):986-1009.
    • (1993) Proc. IEEE , vol.81 , Issue.7 , pp. 986-1009
    • Shao, M.1    Nikias, C.L.2
  • 35
    • 0030169938 scopus 로고    scopus 로고
    • Convergence and steady-state properties of the least-mean mixed-norm (LMMN) adaptive algorithm
    • Tanrikulu O., Chambers J.A. Convergence and steady-state properties of the least-mean mixed-norm (LMMN) adaptive algorithm. IEE Proc. Vis. Image Signal Process 1996, 143(3):137-142.
    • (1996) IEE Proc. Vis. Image Signal Process , vol.143 , Issue.3 , pp. 137-142
    • Tanrikulu, O.1    Chambers, J.A.2
  • 36
    • 0031077264 scopus 로고    scopus 로고
    • A roust mixed-norm adaptive filter algorithm
    • Chambers J., Avlonitis A. A roust mixed-norm adaptive filter algorithm. IEEE Signal Process. Lett. 1997, 4(2):46-48.
    • (1997) IEEE Signal Process. Lett. , vol.4 , Issue.2 , pp. 46-48
    • Chambers, J.1    Avlonitis, A.2
  • 38
    • 0036858524 scopus 로고    scopus 로고
    • Existence and uniqueness of risk-sensitive estimates
    • Lo J.T., Wanner T. Existence and uniqueness of risk-sensitive estimates. IEEE Trans. Automat. Control 2002, 47(11):1945-1948.
    • (2002) IEEE Trans. Automat. Control , vol.47 , Issue.11 , pp. 1945-1948
    • Lo, J.T.1    Wanner, T.2
  • 39
    • 0026909087 scopus 로고
    • Strongly consistent identification algorithms and noise insensitive MSE criteria
    • Delopoulos A.N., Giannakis G.B. Strongly consistent identification algorithms and noise insensitive MSE criteria. IEEE Trans. Signal Process 1992, 40(8):1955-1970.
    • (1992) IEEE Trans. Signal Process , vol.40 , Issue.8 , pp. 1955-1970
    • Delopoulos, A.N.1    Giannakis, G.B.2
  • 40
    • 84885470117 scopus 로고
    • Linear prediction based on higher order statistics by a new criterion, Proceedings of Sixth IEEE SP Workshop Stat. Array Processing
    • C.Y. Chi, W.T. Chen, Linear prediction based on higher order statistics by a new criterion, Proceedings of Sixth IEEE SP Workshop Stat. Array Processing, 1992.
    • (1992)
    • Chi, C.Y.1    Chen, W.T.2
  • 41
    • 0028516546 scopus 로고
    • A new algorithm for the design of linear prediction error filters using cumulant-based MSE criteria
    • Chi C.Y., Chang W.J., Feng C.C. A new algorithm for the design of linear prediction error filters using cumulant-based MSE criteria. IEEE Trans. Signal Process 1994, 42(10):2876-2880.
    • (1994) IEEE Trans. Signal Process , vol.42 , Issue.10 , pp. 2876-2880
    • Chi, C.Y.1    Chang, W.J.2    Feng, C.C.3
  • 42
    • 0030264507 scopus 로고    scopus 로고
    • Design of Wiener filters using a cumulant based MSE criterion
    • Feng C.C., Chi C.Y. Design of Wiener filters using a cumulant based MSE criterion. Signal Process 1996, 54:23-48.
    • (1996) Signal Process , vol.54 , pp. 23-48
    • Feng, C.C.1    Chi, C.Y.2
  • 44
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon C.E. A mathematical theory of communication. J. Bell Syst. Technol. 1948, 27(379-23):623-656.
    • (1948) J. Bell Syst. Technol. , vol.27 , Issue.379-423 , pp. 623-656
    • Shannon, C.E.1
  • 45
    • 84904028896 scopus 로고
    • Maximum entropy spectral analysis, Proceedings of the Thirty-Seventh Annual International Social Exploration Geophysics Meeting, Oklahoma City, OK
    • J.P. Burg, Maximum entropy spectral analysis, Proceedings of the Thirty-Seventh Annual International Social Exploration Geophysics Meeting, Oklahoma City, OK, 1967.
    • (1967)
    • Burg, J.P.1
  • 47
    • 0003335420 scopus 로고
    • Maximum entropy spectral analysis and ARMA processes
    • Ihara S. Maximum entropy spectral analysis and ARMA processes. IEEE Trans. Inf. Theory 1984, 30:377-380.
    • (1984) IEEE Trans. Inf. Theory , vol.30 , pp. 377-380
    • Ihara, S.1
  • 49
    • 0023981750 scopus 로고
    • Self-organization in perceptual networks
    • Linsker R. Self-organization in perceptual networks. Computer 1988, 21:105-117.
    • (1988) Computer , vol.21 , pp. 105-117
    • Linsker, R.1
  • 50
    • 0000353243 scopus 로고
    • How to generate ordered maps by maximizing the mutual information between input and output signals
    • Linsker R. How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Comput. 1989, 1:402-411.
    • (1989) Neural Comput. , vol.1 , pp. 402-411
    • Linsker, R.1
  • 51
    • 0000969444 scopus 로고
    • Deriving receptive fields using an optimal encoding criterion
    • S.J. Hansor (Ed.), Proceedings of Advances in Neural Information Processing Systems
    • R. Linsker, Deriving receptive fields using an optimal encoding criterion, in: S.J. Hansor (Ed.), Proceedings of Advances in Neural Information Processing Systems, 1993, pp. 953-960.
    • (1993) , pp. 953-960
    • Linsker, R.1
  • 54
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept?. Signal Process 1994, 36(3):287-314.
    • (1994) Signal Process , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 55
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources
    • Lee T.W., Girolami M., Sejnowski T. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput. 1999, 11(2):409-433.
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 409-433
    • Lee, T.W.1    Girolami, M.2    Sejnowski, T.3
  • 56
    • 0034207888 scopus 로고    scopus 로고
    • A unifying information-theoretic framework for independent component analysis
    • Lee T.W., Girolami M., Bell A.J. A unifying information-theoretic framework for independent component analysis. Comput. Math. Appl. 2000, 39(11):1-21.
    • (2000) Comput. Math. Appl. , vol.39 , Issue.11 , pp. 1-21
    • Lee, T.W.1    Girolami, M.2    Bell, A.J.3
  • 57
    • 2442463272 scopus 로고    scopus 로고
    • Minimax mutual information approach for independent component analysis
    • Erdogmus D., Hild K.E., Rao Y.N., Principe J.C. Minimax mutual information approach for independent component analysis. Neural Comput. 2004, 16:1235-1252.
    • (2004) Neural Comput. , vol.16 , pp. 1235-1252
    • Erdogmus, D.1    Hild, K.E.2    Rao, Y.N.3    Principe, J.C.4
  • 58
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • Cardoso J.F. Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 1997, 4:109-111.
    • (1997) IEEE Signal Process. Lett. , vol.4 , pp. 109-111
    • Cardoso, J.F.1
  • 59
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive online learning algorithms for blind separation: maximum entropy minimum mutual information
    • Yang H.H., Amari S.I. Adaptive online learning algorithms for blind separation: maximum entropy minimum mutual information. Neural Comput. 1997, 9:1457-1482.
    • (1997) Neural Comput. , vol.9 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.I.2
  • 60
    • 0036648194 scopus 로고    scopus 로고
    • Mutual information approach to blind separation of stationary source
    • Pham D.T. Mutual information approach to blind separation of stationary source. IEEE Trans. Inf. Theory 2002, 48(7):1-12.
    • (2002) IEEE Trans. Inf. Theory , vol.48 , Issue.7 , pp. 1-12
    • Pham, D.T.1
  • 61
    • 14844353639 scopus 로고    scopus 로고
    • A general approach for mutual information minimization and its application to blind source separation
    • Zadeh M.B., Jutten C. A general approach for mutual information minimization and its application to blind source separation. Signal Process 2005, 85:975-995.
    • (2005) Signal Process , vol.85 , pp. 975-995
    • Zadeh, M.B.1    Jutten, C.2
  • 63
    • 0034245254 scopus 로고    scopus 로고
    • Learning from examples with information theoretic criteria
    • Principe J.C., Xu D., Zhao Q., et al. Learning from examples with information theoretic criteria. J. VLSI Signal Process. Syst. 2000, 26:61-77.
    • (2000) J. VLSI Signal Process. Syst. , vol.26 , pp. 61-77
    • Principe, J.C.1    Xu, D.2    Zhao, Q.3
  • 68
    • 85032751845 scopus 로고    scopus 로고
    • From linear adaptive filtering to nonlinear information processing
    • Erdogmus D., Principe J.C. From linear adaptive filtering to nonlinear information processing. IEEE Signal Process. Mag. 2006, 23(6):15-33.
    • (2006) IEEE Signal Process. Mag. , vol.23 , Issue.6 , pp. 15-33
    • Erdogmus, D.1    Principe, J.C.2
  • 69
    • 33747130746 scopus 로고
    • An information theory viewpoint for the general identification problem
    • Zaborszky J. An information theory viewpoint for the general identification problem. IEEE Trans. Automat. Control 1966, 11(1):130-131.
    • (1966) IEEE Trans. Automat. Control , vol.11 , Issue.1 , pp. 130-131
    • Zaborszky, J.1
  • 71
    • 49649143835 scopus 로고
    • Filtering and control performance bounds with implications on asymptotic separation
    • Snyder D.L., Rhodes I.B. Filtering and control performance bounds with implications on asymptotic separation. Automatica 1972, 8:747-753.
    • (1972) Automatica , vol.8 , pp. 747-753
    • Snyder, D.L.1    Rhodes, I.B.2
  • 72
    • 0018985831 scopus 로고
    • Cramer-Rao bound for multidimensional discrete-time dynamical systems
    • Galdos J.I.A. Cramer-Rao bound for multidimensional discrete-time dynamical systems. IEEE Trans. Automat. Control 1980, 25:117-119.
    • (1980) IEEE Trans. Automat. Control , vol.25 , pp. 117-119
    • Galdos, J.I.A.1
  • 73
    • 0030196713 scopus 로고    scopus 로고
    • On the accuracy of estimating the parameters of a regular stationary process
    • Friedlander B., Francos J. On the accuracy of estimating the parameters of a regular stationary process. IEEE Trans. Inf. Theory 1996, 42(4):1202-1211.
    • (1996) IEEE Trans. Inf. Theory , vol.42 , Issue.4 , pp. 1202-1211
    • Friedlander, B.1    Francos, J.2
  • 74
    • 0035120825 scopus 로고    scopus 로고
    • Parameter estimation problems with singular information matrices
    • Stoica P., Marzetta T.L. Parameter estimation problems with singular information matrices. IEEE Trans. Signal Process 2001, 49(1):87-90.
    • (2001) IEEE Trans. Signal Process , vol.49 , Issue.1 , pp. 87-90
    • Stoica, P.1    Marzetta, T.L.2
  • 75
    • 0014712123 scopus 로고
    • Performance limitations and error calculations for parameter estimation
    • Seidman L.P. Performance limitations and error calculations for parameter estimation. Proc. IEEE 1970, 58:644-652.
    • (1970) Proc. IEEE , vol.58 , pp. 644-652
    • Seidman, L.P.1
  • 76
    • 0015346335 scopus 로고
    • Lower and upper bounds on the optimal filtering error of certain diffusion process
    • Zakai M., Ziv J. Lower and upper bounds on the optimal filtering error of certain diffusion process. IEEE Trans. Inf. Theory 1972, 18(3):325-331.
    • (1972) IEEE Trans. Inf. Theory , vol.18 , Issue.3 , pp. 325-331
    • Zakai, M.1    Ziv, J.2
  • 77
    • 0019566111 scopus 로고
    • A rate distortion theory lower bound on desired function filtering error
    • Galdos J.I. A rate distortion theory lower bound on desired function filtering error. IEEE Trans. Inf. Theory 1981, 27:366-368.
    • (1981) IEEE Trans. Inf. Theory , vol.27 , pp. 366-368
    • Galdos, J.I.1
  • 78
    • 0024641745 scopus 로고
    • Rate distortion lower bound for a special class of nonlinear estimation problems
    • Washburn R.B., Teneketzis D. Rate distortion lower bound for a special class of nonlinear estimation problems. Syst. Control Lett. 1989, 12:281-286.
    • (1989) Syst. Control Lett. , vol.12 , pp. 281-286
    • Washburn, R.B.1    Teneketzis, D.2
  • 79
    • 0014781162 scopus 로고
    • Entropy analysis of estimating systems
    • Weidemann H.L., Stear E.B. Entropy analysis of estimating systems. IEEE Trans. Inf. Theory 1970, 16(3):264-270.
    • (1970) IEEE Trans. Inf. Theory , vol.16 , Issue.3 , pp. 264-270
    • Weidemann, H.L.1    Stear, E.B.2
  • 80
    • 0343492067 scopus 로고
    • On the calculation of mutual information
    • Duncan T.E. On the calculation of mutual information. SIAM J. Appl. Math. 1970, 19:215-220.
    • (1970) SIAM J. Appl. Math. , vol.19 , pp. 215-220
    • Duncan, T.E.1
  • 81
    • 17644366813 scopus 로고    scopus 로고
    • Mutual information and minimum mean-square error in Gaussian Channels
    • Guo D., Shamai S., Verdu S. Mutual information and minimum mean-square error in Gaussian Channels. IEEE Trans. Inf. Theory 2005, 51(4):1261-1282.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.4 , pp. 1261-1282
    • Guo, D.1    Shamai, S.2    Verdu, S.3
  • 82
    • 26444493543 scopus 로고    scopus 로고
    • On mutual information, likelihood-ratios and estimation error for the additive Gaussian channel
    • Zakai M. On mutual information, likelihood-ratios and estimation error for the additive Gaussian channel. IEEE Trans. Inf. Theory 2005, 51(9):3017-3024.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.9 , pp. 3017-3024
    • Zakai, M.1
  • 83
    • 33947394440 scopus 로고    scopus 로고
    • Divergence and minimum mean-square error in continuous-time additive white Gaussian noise channels
    • Binia J. Divergence and minimum mean-square error in continuous-time additive white Gaussian noise channels. IEEE Trans. Inf. Theory 2006, 52(3):1160-1163.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.3 , pp. 1160-1163
    • Binia, J.1
  • 84
    • 62749175272 scopus 로고    scopus 로고
    • Estimation and mutual information, Proceedings of the Forty-Sixth IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007, pp. 324-327.
    • T.E. Duncan, B. Pasik-Duncan, Estimation and mutual information, Proceedings of the Forty-Sixth IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007, pp. 324-327.
    • Duncan, T.E.1    Pasik-Duncan, B.2
  • 85
    • 77954590943 scopus 로고    scopus 로고
    • Mismatched estimation and relative entropy
    • Verdu S. Mismatched estimation and relative entropy. IEEE Trans. Inf. Theory 2010, 56(8):3712-3720.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.8 , pp. 3712-3720
    • Verdu, S.1
  • 86
    • 0014520540 scopus 로고
    • Entropy analysis of parameter estimation
    • Weidemann H.L., Stear E.B. Entropy analysis of parameter estimation. Inf. Control 1969, 14:493-506.
    • (1969) Inf. Control , vol.14 , pp. 493-506
    • Weidemann, H.L.1    Stear, E.B.2
  • 87
    • 0039265250 scopus 로고
    • An application of the information theory to estimation problems
    • Tomita Y., Ohmatsu S., Soeda T. An application of the information theory to estimation problems. Inf. Control 1976, 32:101-111.
    • (1976) Inf. Control , vol.32 , pp. 101-111
    • Tomita, Y.1    Ohmatsu, S.2    Soeda, T.3
  • 88
    • 0018435097 scopus 로고
    • Linear prediction, filtering, and smoothing: an information theoretic approach
    • Kalata P., Priemer R. Linear prediction, filtering, and smoothing: an information theoretic approach. Inf. Sci. (Ny) 1979, 17:1-14.
    • (1979) Inf. Sci. (Ny) , vol.17 , pp. 1-14
    • Kalata, P.1    Priemer, R.2
  • 89
    • 0020112182 scopus 로고
    • An extension of the entropy theorem for parameter estimation
    • Minamide N. An extension of the entropy theorem for parameter estimation. Inf. Control 1982, 53(1):81-90.
    • (1982) Inf. Control , vol.53 , Issue.1 , pp. 81-90
    • Minamide, N.1
  • 90
    • 0028467720 scopus 로고
    • Minimum entropy of error principle in estimation
    • Janzura M., Koski T., Otahal A. Minimum entropy of error principle in estimation. Inf. Sci. (Ny) 1994, 79:123-144.
    • (1994) Inf. Sci. (Ny) , vol.79 , pp. 123-144
    • Janzura, M.1    Koski, T.2    Otahal, A.3
  • 91
    • 46749124769 scopus 로고    scopus 로고
    • On the minimum entropy of a mixture of unimodal and symmetric distributions
    • Chen T.L., Geman S. On the minimum entropy of a mixture of unimodal and symmetric distributions. IEEE Trans. Inf. Theory 2008, 54(7):3166-3174.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.7 , pp. 3166-3174
    • Chen, T.L.1    Geman, S.2
  • 92
    • 75149150801 scopus 로고    scopus 로고
    • On optimal estimations with minimum error entropy criterion
    • Chen B., Zhu Y., Hu J., Zhang M. On optimal estimations with minimum error entropy criterion. J. Franklin Inst. 2010, 347(2):545-558.
    • (2010) J. Franklin Inst. , vol.347 , Issue.2 , pp. 545-558
    • Chen, B.1    Zhu, Y.2    Hu, J.3    Zhang, M.4
  • 93
    • 77955431627 scopus 로고    scopus 로고
    • A new interpretation on the MMSE as a robust MEE criterion
    • Chen B., Zhu Y., Hu J., Zhang M. A new interpretation on the MMSE as a robust MEE criterion. Signal Process 2010, 90(12):3313-3316.
    • (2010) Signal Process , vol.90 , Issue.12 , pp. 3313-3316
    • Chen, B.1    Zhu, Y.2    Hu, J.3    Zhang, M.4
  • 94
    • 84864820604 scopus 로고    scopus 로고
    • Some further results on the minimum error entropy estimation
    • Chen B., Principe J.C. Some further results on the minimum error entropy estimation. Entropy 2012, 14(5):966-977.
    • (2012) Entropy , vol.14 , Issue.5 , pp. 966-977
    • Chen, B.1    Principe, J.C.2
  • 95
    • 84871666276 scopus 로고    scopus 로고
    • On the smoothed minimum error entropy criterion
    • Chen B., Principe J.C. On the smoothed minimum error entropy criterion. Entropy 2012, 14(11):2311-2323.
    • (2012) Entropy , vol.14 , Issue.11 , pp. 2311-2323
    • Chen, B.1    Principe, J.C.2
  • 96
    • 0003580192 scopus 로고
    • On estimation of a probability density function and mode
    • Holden-Day, Inc., San Diego, CA
    • Parzen E. On estimation of a probability density function and mode. Time Series Analysis Papers 1967, Holden-Day, Inc., San Diego, CA.
    • (1967) Time Series Analysis Papers
    • Parzen, E.1
  • 99
    • 0036571074 scopus 로고    scopus 로고
    • Entropy minimization for supervised digital communications channel equalization
    • Santamaria I., Erdogmus D., Principe J.C. Entropy minimization for supervised digital communications channel equalization. IEEE Trans. Signal Process 2002, 50(5):1184-1192.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.5 , pp. 1184-1192
    • Santamaria, I.1    Erdogmus, D.2    Principe, J.C.3
  • 100
    • 0036647905 scopus 로고    scopus 로고
    • An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems
    • Erdogmus D., Principe J.C. An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. Signal Process 2002, 50(7):1780-1786.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.7 , pp. 1780-1786
    • Erdogmus, D.1    Principe, J.C.2
  • 101
    • 0036737108 scopus 로고    scopus 로고
    • Generalized information potential criterion for adaptive system training
    • Erdogmus D., Principe J.C. Generalized information potential criterion for adaptive system training. IEEE Trans. Neural Netw. 2002, 13:1035-1044.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1035-1044
    • Erdogmus, D.1    Principe, J.C.2
  • 102
    • 0038538359 scopus 로고    scopus 로고
    • Convergence properties and data efficiency of the minimum error entropy criterion in Adaline training
    • Erdogmus D., Principe J.C. Convergence properties and data efficiency of the minimum error entropy criterion in Adaline training. IEEE Trans. Signal Process 2003, 51:1966-1978.
    • (2003) IEEE Trans. Signal Process , vol.51 , pp. 1966-1978
    • Erdogmus, D.1    Principe, J.C.2
  • 103
  • 104
    • 3843114488 scopus 로고    scopus 로고
    • Advanced search algorithms for information-theoretic learning with kernel-based estimators
    • Morejon R.A., Principe J.C. Advanced search algorithms for information-theoretic learning with kernel-based estimators. IEEE Trans. Neural Netw. 2004, 15(4):874-884.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.4 , pp. 874-884
    • Morejon, R.A.1    Principe, J.C.2
  • 105
    • 34447268451 scopus 로고    scopus 로고
    • A minimum-error entropy criterion with self-adjusting step-size (MEE-SAS)
    • Han S., Rao S., Erdogmus D., Jeong K.H., Principe J.C. A minimum-error entropy criterion with self-adjusting step-size (MEE-SAS). Signal Process 2007, 87:2733-2745.
    • (2007) Signal Process , vol.87 , pp. 2733-2745
    • Han, S.1    Rao, S.2    Erdogmus, D.3    Jeong, K.H.4    Principe, J.C.5
  • 106
    • 77954565185 scopus 로고    scopus 로고
    • Mean-square convergence analysis of ADALINE training with minimum error entropy criterion
    • Chen B., Zhu Y., Hu J. Mean-square convergence analysis of ADALINE training with minimum error entropy criterion. IEEE Trans. Neural Netw. 2010, 21(7):1168-1179.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.7 , pp. 1168-1179
    • Chen, B.1    Zhu, Y.2    Hu, J.3
  • 107
    • 41549151950 scopus 로고    scopus 로고
    • An extended orthogonal forward regression algorithm for system identification using entropy
    • Guo L.Z., Billings S.A., Zhu D.Q. An extended orthogonal forward regression algorithm for system identification using entropy. Int. J. Control. 2008, 81(4):690-699.
    • (2008) Int. J. Control. , vol.81 , Issue.4 , pp. 690-699
    • Guo, L.Z.1    Billings, S.A.2    Zhu, D.Q.3
  • 109
    • 0042038151 scopus 로고    scopus 로고
    • Kullback-Leibler distance approach to system identification
    • Kulhavý R.A. Kullback-Leibler distance approach to system identification. Annu. Rev. Control 1996, 20:119-130.
    • (1996) Annu. Rev. Control , vol.20 , pp. 119-130
    • Kulhavý, R.A.1
  • 110
    • 0022733857 scopus 로고
    • Information theory measures with application to model identification
    • Matsuoka T., Ulrych T.J. Information theory measures with application to model identification. IEEE. Trans. Acoust. 1986, 34(3):511-517.
    • (1986) IEEE. Trans. Acoust. , vol.34 , Issue.3 , pp. 511-517
    • Matsuoka, T.1    Ulrych, T.J.2
  • 111
    • 0033130206 scopus 로고    scopus 로고
    • A large-sample model selection criterion based on Kullback's symmetric divergence
    • Cavanaugh J.E. A large-sample model selection criterion based on Kullback's symmetric divergence. Stat. Probab. Lett. 1999, 42:333-343.
    • (1999) Stat. Probab. Lett. , vol.42 , pp. 333-343
    • Cavanaugh, J.E.1
  • 112
    • 9744257850 scopus 로고    scopus 로고
    • A small sample model selection criterion based on the Kullback symmetric divergence
    • Seghouane A.K., Bekara M. A small sample model selection criterion based on the Kullback symmetric divergence. IEEE Trans. Signal Process 2004, 52(12):3314-3323.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.12 , pp. 3314-3323
    • Seghouane, A.K.1    Bekara, M.2
  • 113
    • 33846036765 scopus 로고    scopus 로고
    • The AIC criterion and symmetrizing the Kullback-Leibler divergence
    • Seghouane A.K., Amari S.I. The AIC criterion and symmetrizing the Kullback-Leibler divergence. IEEE Trans. Neural Netw. 2007, 18(1):97-106.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.1 , pp. 97-106
    • Seghouane, A.K.1    Amari, S.I.2
  • 114
    • 69249221267 scopus 로고    scopus 로고
    • Asymptotic bootstrap corrections of AIC for linear regression models
    • Seghouane A.K. Asymptotic bootstrap corrections of AIC for linear regression models. Signal Process 2010, 90(1):217-224.
    • (2010) Signal Process , vol.90 , Issue.1 , pp. 217-224
    • Seghouane, A.K.1
  • 115
    • 0017934632 scopus 로고
    • An information theoretic approach to dynamic systems modeling and identification
    • Baram Y., Sandell N.R. An information theoretic approach to dynamic systems modeling and identification. IEEE Trans. Automat. Control 1978, 23(1):61-66.
    • (1978) IEEE Trans. Automat. Control , vol.23 , Issue.1 , pp. 61-66
    • Baram, Y.1    Sandell, N.R.2
  • 116
  • 117
    • 0020166624 scopus 로고
    • Continuous-time stochastic model simplification
    • Tugnait J.K. Continuous-time stochastic model simplification. IEEE Trans. Automat. Control 1982, 27(4):993-996.
    • (1982) IEEE Trans. Automat. Control , vol.27 , Issue.4 , pp. 993-996
    • Tugnait, J.K.1
  • 118
    • 0032594192 scopus 로고    scopus 로고
    • Reduced-order models and controllers for continuous-time stochastic systems: an information theory approach
    • Leland R. Reduced-order models and controllers for continuous-time stochastic systems: an information theory approach. IEEE Trans. Automat. Control 1999, 44(9):1714-1719.
    • (1999) IEEE Trans. Automat. Control , vol.44 , Issue.9 , pp. 1714-1719
    • Leland, R.1
  • 119
    • 0033096805 scopus 로고    scopus 로고
    • An approximate-predictor approach to reduced-order models and controllers for distributed-parameter systems
    • Leland R. An approximate-predictor approach to reduced-order models and controllers for distributed-parameter systems. IEEE Trans. Automat. Control 1999, 44(3):623-627.
    • (1999) IEEE Trans. Automat. Control , vol.44 , Issue.3 , pp. 623-627
    • Leland, R.1
  • 120
    • 70349423630 scopus 로고    scopus 로고
    • Parameter identifiability with Kullback-Leibler information divergence criterion
    • Chen B., Hu J., Zhu Y., Sun Z. Parameter identifiability with Kullback-Leibler information divergence criterion. Int. J. Adapt. Control Signal Process 2009, 23(10):940-960.
    • (2009) Int. J. Adapt. Control Signal Process , vol.23 , Issue.10 , pp. 940-960
    • Chen, B.1    Hu, J.2    Zhu, Y.3    Sun, Z.4
  • 121
    • 0025494624 scopus 로고
    • Sequential algorithms for parameter estimation based on the Kullback-Leibler information measure
    • Weinstein E., Feder M., Oppenheim A.V. Sequential algorithms for parameter estimation based on the Kullback-Leibler information measure. IEEE. Trans. Acoust. 1990, 38(9):1652-1654.
    • (1990) IEEE. Trans. Acoust. , vol.38 , Issue.9 , pp. 1652-1654
    • Weinstein, E.1    Feder, M.2    Oppenheim, A.V.3
  • 122
    • 0028439435 scopus 로고
    • Online estimation of dynamic shock-error models based on the Kullback-Leibler information measure
    • Krishnamurthy V. Online estimation of dynamic shock-error models based on the Kullback-Leibler information measure. IEEE Trans. Automat. Control 1994, 39(5):1129-1135.
    • (1994) IEEE Trans. Automat. Control , vol.39 , Issue.5 , pp. 1129-1135
    • Krishnamurthy, V.1
  • 123
    • 0010414216 scopus 로고    scopus 로고
    • Approximation problems with the divergence criterion for Gaussian variables and Gaussian process
    • Stoorvogel A.A., Van Schuppen J.H. Approximation problems with the divergence criterion for Gaussian variables and Gaussian process. Syst. Control. Lett. 1998, 35:207-218.
    • (1998) Syst. Control. Lett. , vol.35 , pp. 207-218
    • Stoorvogel, A.A.1    Van Schuppen, J.H.2
  • 124
    • 0141642530 scopus 로고    scopus 로고
    • System identification with information theoretic criteria
    • Springer, Berlin, S. Bittanti, G. Picc (Eds.)
    • Stoorvogel A.A., Van Schuppen J.H. System identification with information theoretic criteria. Identification, Adaptation, Learning 1996, Springer, Berlin. S. Bittanti, G. Picc (Eds.).
    • (1996) Identification, Adaptation, Learning
    • Stoorvogel, A.A.1    Van Schuppen, J.H.2
  • 125
    • 70350038256 scopus 로고    scopus 로고
    • Information theoretical approach to identification of hybrid systems
    • Springer, Berlin Heidelberg
    • Pu L., Hu J., Chen B. Information theoretical approach to identification of hybrid systems. Hybrid Systems: Computation and Control 2008, Springer, Berlin Heidelberg, pp. 650-653.
    • (2008) Hybrid Systems: Computation and Control , pp. 650-653
    • Pu, L.1    Hu, J.2    Chen, B.3
  • 126
    • 64849100387 scopus 로고    scopus 로고
    • Adaptive filtering under minimum information divergence criterion
    • Chen B., Zhu Y., Hu J., Sun Z. Adaptive filtering under minimum information divergence criterion. Int. J. Control Autom. Syst. 2009, 7(2):157-164.
    • (2009) Int. J. Control Autom. Syst. , vol.7 , Issue.2 , pp. 157-164
    • Chen, B.1    Zhu, Y.2    Hu, J.3    Sun, Z.4
  • 127
    • 33645162669 scopus 로고    scopus 로고
    • Minimum α-divergence estimation for ARCH models
    • Chandra S.A., Taniguchi M. Minimum α-divergence estimation for ARCH models. J. Time Series Anal. 2006, 27(1):19-39.
    • (2006) J. Time Series Anal. , vol.27 , Issue.1 , pp. 19-39
    • Chandra, S.A.1    Taniguchi, M.2
  • 128
    • 0345870176 scopus 로고    scopus 로고
    • Estimation of parameters for a mixture of normal distributions on the basis of the Cressie and Read divergence
    • Pardo M.C. Estimation of parameters for a mixture of normal distributions on the basis of the Cressie and Read divergence. Commun. Stat-Simul. C. 1999, 28(1):115-130.
    • (1999) Commun. Stat-Simul. C. , vol.28 , Issue.1 , pp. 115-130
    • Pardo, M.C.1
  • 129
    • 0034376013 scopus 로고    scopus 로고
    • Minimum ë-divergence estimator and hierarchical testing in loglinear models
    • Cressie N., Pardo L. Minimum ë-divergence estimator and hierarchical testing in loglinear models. Stat. Sin. 2000, 10:867-884.
    • (2000) Stat. Sin. , vol.10 , pp. 867-884
    • Cressie, N.1    Pardo, L.2
  • 131
    • 0031170387 scopus 로고    scopus 로고
    • Optimal state estimation for stochastic systems: an information theoretic approach
    • Feng X., Loparo K.A., Fang Y. Optimal state estimation for stochastic systems: an information theoretic approach. IEEE Trans. Automat. Control 1997, 42(6):771-785.
    • (1997) IEEE Trans. Automat. Control , vol.42 , Issue.6 , pp. 771-785
    • Feng, X.1    Loparo, K.A.2    Fang, Y.3
  • 133
    • 85008039529 scopus 로고    scopus 로고
    • A robust ICA-based adaptive filter algorithm for system identification
    • Yang J.-M., Sakai H. A robust ICA-based adaptive filter algorithm for system identification. IEEE Trans. Circuits Syst. Express Briefs 2008, 55(12):1259-1263.
    • (2008) IEEE Trans. Circuits Syst. Express Briefs , vol.55 , Issue.12 , pp. 1259-1263
    • Yang, J.-M.1    Sakai, H.2
  • 134
    • 84904240299 scopus 로고    scopus 로고
    • Identification of objects by the maximal information criterion
    • Durgaryan I.S., Pashchenko F.F. Identification of objects by the maximal information criterion. Autom. Remote Control 2001, 62(7):1104-1114.
    • (2001) Autom. Remote Control , vol.62 , Issue.7 , pp. 1104-1114
    • Durgaryan, I.S.1    Pashchenko, F.F.2
  • 135
    • 56549090787 scopus 로고    scopus 로고
    • Adaptive filtering under maximum mutual information criterion
    • Chen B., Hu J., Li H., Sun Z. Adaptive filtering under maximum mutual information criterion. Neurocomputing 2008, 71(16):3680-3684.
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3680-3684
    • Chen, B.1    Hu, J.2    Li, H.3    Sun, Z.4
  • 136
    • 80052799930 scopus 로고    scopus 로고
    • Stochastic gradient identification of Wiener system with maximum mutual information criterion
    • Chen B., Zhu Y., Hu J., Príncipe J.C. Stochastic gradient identification of Wiener system with maximum mutual information criterion. Signal Process., IET 2011, 5(6):589-597.
    • (2011) Signal Process., IET , vol.5 , Issue.6 , pp. 589-597
    • Chen, B.1    Zhu, Y.2    Hu, J.3    Príncipe, J.C.4
  • 137
    • 36249029853 scopus 로고    scopus 로고
    • Correntropy: properties and applications in non-Gaussian signal processing
    • Liu W., Pokharel P.P., Principe J.C. Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process 2007, 55(11):5286-5298.
    • (2007) IEEE Trans. Signal Process , vol.55 , Issue.11 , pp. 5286-5298
    • Liu, W.1    Pokharel, P.P.2    Principe, J.C.3
  • 138
    • 70449389874 scopus 로고    scopus 로고
    • Using correntropy as a cost function in linear adaptive filters, in: International Joint Conference on Neural Networks (IJCNN'09), IEEE
    • A. Singh, J.C. Principe, Using correntropy as a cost function in linear adaptive filters, in: International Joint Conference on Neural Networks (IJCNN'09), IEEE, 2009, pp. 2950-2955.
    • (2009) , pp. 2950-2955
    • Singh, A.1    Principe, J.C.2
  • 139
    • 80054740224 scopus 로고    scopus 로고
    • Kernel adaptive filtering with maximum correntropy criterion, in: The 2011 International Joint Conference on Neural Networks (IJCNN), IEEE
    • S. Zhao, B. Chen, J.C. Principe, Kernel adaptive filtering with maximum correntropy criterion, in: The 2011 International Joint Conference on Neural Networks (IJCNN), IEEE, 2011, pp. 2012-2017.
    • (2011) , pp. 2012-2017
    • Zhao, S.1    Chen, B.2    Principe, J.C.3
  • 140
    • 70350707612 scopus 로고    scopus 로고
    • Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting
    • Bessa R.J., Miranda V., Gama J. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE Trans. Power Systems 2009, 24(4):1657-1666.
    • (2009) IEEE Trans. Power Systems , vol.24 , Issue.4 , pp. 1657-1666
    • Bessa, R.J.1    Miranda, V.2    Gama, J.3
  • 141
    • 4544300312 scopus 로고    scopus 로고
    • Minimizing Fisher information of the error in supervised adaptive filter training, in: Proc. ICASSP
    • Xu J.W., Erdogmus D., Principe J.C. Minimizing Fisher information of the error in supervised adaptive filter training, in: Proc. ICASSP, 2004, pp.513-516.
    • (2004) , pp. 513-516
    • Xu, J.W.1    Erdogmus, D.2    Principe, J.C.3
  • 145
    • 34250617022 scopus 로고    scopus 로고
    • The information bottleneck method
    • arXiv preprint physics/0004057
    • N. Tishby, F.C. Pereira, W. Bialek, The information bottleneck method. arXiv preprint physics/0004057, 2000.
    • (2000)
    • Tishby, N.1    Pereira, F.C.2    Bialek, W.3
  • 146
    • 0001902056 scopus 로고
    • Three approaches to the quantitative definition of information
    • Kolmogorov A.N. Three approaches to the quantitative definition of information. Probl. Inform. Transm. 1965, 1:4-7.
    • (1965) Probl. Inform. Transm. , vol.1 , pp. 4-7
    • Kolmogorov, A.N.1
  • 148
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106:620-630.
    • (1957) Phys. Rev. , vol.106 , pp. 620-630
    • Jaynes, E.T.1
  • 150
    • 77950975249 scopus 로고    scopus 로고
    • An efficient algorithm to compute maximum entropy densities
    • Ormoneit D., White H. An efficient algorithm to compute maximum entropy densities. Econom. Rev. 1999, 18(2):127-140.
    • (1999) Econom. Rev. , vol.18 , Issue.2 , pp. 127-140
    • Ormoneit, D.1    White, H.2
  • 151
    • 0346093801 scopus 로고    scopus 로고
    • Calculation of maximum entropy densities with application to income distribution
    • Wu X. Calculation of maximum entropy densities with application to income distribution. J. Econom. 2003, 115(2):347-354.
    • (2003) J. Econom. , vol.115 , Issue.2 , pp. 347-354
    • Wu, X.1
  • 153
    • 0002453010 scopus 로고
    • Concept of structural α-entropy
    • Havrda J., Charvat F. Concept of structural α-entropy. Kybernetika 1967, 3:30-35.
    • (1967) Kybernetika , vol.3 , pp. 30-35
    • Havrda, J.1    Charvat, F.2
  • 154
    • 0039535146 scopus 로고
    • Generalizations of Renyi's entropy of order α
    • Varma R.S. Generalizations of Renyi's entropy of order α. J. Math. Sci. 1966, 1:34-48.
    • (1966) J. Math. Sci. , vol.1 , pp. 34-48
    • Varma, R.S.1
  • 155
    • 0000242156 scopus 로고
    • Information-theoretic considerations on estimation problems
    • Arimoto S. Information-theoretic considerations on estimation problems. Inf. Control 1971, 19:181-194.
    • (1971) Inf. Control , vol.19 , pp. 181-194
    • Arimoto, S.1
  • 157
    • 2942655246 scopus 로고    scopus 로고
    • Cumulative residual entropy: a new measure of information
    • Rao M., Chen Y., Vemuri B.C., Wang F. Cumulative residual entropy: a new measure of information. IEEE Trans. Inf. Theory 2004, 50(6):1220-1228.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.6 , pp. 1220-1228
    • Rao, M.1    Chen, Y.2    Vemuri, B.C.3    Wang, F.4
  • 159
    • 84863142780 scopus 로고    scopus 로고
    • Survival information potential: a new criterion for adaptive system training
    • Chen B., Zhu P., Príncipe J.C. Survival information potential: a new criterion for adaptive system training. IEEE Trans. Signal Process 2012, 60(3):1184-1194.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.3 , pp. 1184-1194
    • Chen, B.1    Zhu, P.2    Príncipe, J.C.3
  • 160
    • 0001500115 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type, and their connection with the theory of integral equations. Philos. Trans. R. Soc. London 1909, 209:415-446.
    • (1909) Philos. Trans. R. Soc. London , vol.209 , pp. 415-446
    • Mercer, J.1
  • 163
    • 0001413175 scopus 로고
    • The analysis of multiple stationary time series
    • Whittle P. The analysis of multiple stationary time series. J. R. Stat. Soc. B 1953, 15(1):125-139.
    • (1953) J. R. Stat. Soc. B , vol.15 , Issue.1 , pp. 125-139
    • Whittle, P.1
  • 164
    • 85013868628 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 1977, 39(1):1-38.
    • (1977) J. R. Stat. Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 166
    • 0032656490 scopus 로고    scopus 로고
    • Estimation based on entropy matching for generalized Gaussian PDF modeling
    • Aiazzi B., Alparone L., Baronti S. Estimation based on entropy matching for generalized Gaussian PDF modeling. IEEE Signal Process. Lett. 1999, 6(6):138-140.
    • (1999) IEEE Signal Process. Lett. , vol.6 , Issue.6 , pp. 138-140
    • Aiazzi, B.1    Alparone, L.2    Baronti, S.3
  • 167
    • 23744516742 scopus 로고    scopus 로고
    • Entropy of a variable slightly contaminated with another
    • Pham D.T. Entropy of a variable slightly contaminated with another. IEEE Signal Process. Lett. 2005, 12:536-539.
    • (2005) IEEE Signal Process. Lett. , vol.12 , pp. 536-539
    • Pham, D.T.1
  • 168
    • 70749126726 scopus 로고    scopus 로고
    • Information theoretic interpretation of error criteria
    • Chen B., Hu J., Zhu Y., Sun Z. Information theoretic interpretation of error criteria. Acta Automatica Sin. 2009, 35(10):1302-1309.
    • (2009) Acta Automatica Sin. , vol.35 , Issue.10 , pp. 1302-1309
    • Chen, B.1    Hu, J.2    Zhu, Y.3    Sun, Z.4
  • 169
    • 84862991640 scopus 로고    scopus 로고
    • Maximum correntropy estimation is a smoothed MAP estimation
    • Chen B., Príncipe J.C. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett. 2012, 19(8):491-494.
    • (2012) IEEE Signal Process. Lett. , vol.19 , Issue.8 , pp. 491-494
    • Chen, B.1    Príncipe, J.C.2
  • 171
    • 0025244594 scopus 로고
    • Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing
    • Styblinsli M.A., Tang T.S. Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing. Neural Netw. 1990, 3:467-483.
    • (1990) Neural Netw. , vol.3 , pp. 467-483
    • Styblinsli, M.A.1    Tang, T.S.2
  • 174
    • 0242321167 scopus 로고
    • On properly positive Hermitian matrices
    • Moore E. On properly positive Hermitian matrices. Bull. Amer. Math. Soc. 1916, 23(59):66-67.
    • (1916) Bull. Amer. Math. Soc. , vol.23 , Issue.59 , pp. 66-67
    • Moore, E.1
  • 175
    • 84959714104 scopus 로고
    • The theory of reproducing kernels and their applications
    • Aronszajn N. The theory of reproducing kernels and their applications. Cambridge Philos. Soc. Proc. 1943, 39:133-153.
    • (1943) Cambridge Philos. Soc. Proc. , vol.39 , pp. 133-153
    • Aronszajn, N.1
  • 176
  • 178
    • 45749141285 scopus 로고    scopus 로고
    • Kernel affine projection algorithm
    • Article ID 784292, 12 pages 10.1155/2008/784292.
    • Liu W., Principe J. Kernel affine projection algorithm. EURASIP J. Adv. Signal Process 2008, Article ID 784292, 12 pages. 10.1155/2008/784292.
    • (2008) EURASIP J. Adv. Signal Process
    • Liu, W.1    Principe, J.2
  • 179
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural. Comput. 1991, 3:213-225.
    • (1991) Neural. Comput. , vol.3 , pp. 213-225
    • Platt, J.1
  • 181
    • 72149098116 scopus 로고    scopus 로고
    • An information theoretic approach of designing sparse kernel adaptive filters
    • Liu W., Park I.l., Principe J.C. An information theoretic approach of designing sparse kernel adaptive filters. IEEE Trans. Neural Netw. 2009, 20:1950-1961.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , pp. 1950-1961
    • Liu, W.1    Park, I.2    Principe, J.C.3
  • 184
    • 0002260546 scopus 로고
    • A test for normality based on sample entropy
    • Vasicek O. A test for normality based on sample entropy. J. Roy. Statist. Soc. B 1976, 38(1):54-59.
    • (1976) J. Roy. Statist. Soc. B , vol.38 , Issue.1 , pp. 54-59
    • Vasicek, O.1
  • 185
    • 77956175555 scopus 로고    scopus 로고
    • Information theoretic learning with adaptive kernels
    • Singh A., Príncipe J.C. Information theoretic learning with adaptive kernels. Signal Process 2011, 91(2):203-213.
    • (2011) Signal Process , vol.91 , Issue.2 , pp. 203-213
    • Singh, A.1    Príncipe, J.C.2
  • 186
    • 84953735880 scopus 로고    scopus 로고
    • A recursive Renyi's entropy estimator, in: Proceedings of the Twelfth IEEE Workshop on Neural Networks for Signal Processing
    • D. Erdogmus, J.C. Principe, S.-P. Kim, J.C. Sanchez, A recursive Renyi's entropy estimator, in: Proceedings of the Twelfth IEEE Workshop on Neural Networks for Signal Processing, 2002, pp. 209-217.
    • (2002) , pp. 209-217
    • Erdogmus, D.1    Principe, J.C.2    Kim, S.-P.3    Sanchez, J.C.4
  • 187
    • 34247397419 scopus 로고    scopus 로고
    • Partially adaptive estimation via the maximum entropy densities
    • Wu X., Stengos T. Partially adaptive estimation via the maximum entropy densities. J. Econom. 2005, 8:352-366.
    • (2005) J. Econom. , vol.8 , pp. 352-366
    • Wu, X.1    Stengos, T.2
  • 188
    • 77955208429 scopus 로고    scopus 로고
    • Stochastic information gradient algorithm based on maximum entropy density estimation
    • Chen B., Zhu Y., Hu J., Zhang M. Stochastic information gradient algorithm based on maximum entropy density estimation. ICIC Exp. Lett. 2010, 4(3):1141-1145.
    • (2010) ICIC Exp. Lett. , vol.4 , Issue.3 , pp. 1141-1145
    • Chen, B.1    Zhu, Y.2    Hu, J.3    Zhang, M.4
  • 189
    • 79952559211 scopus 로고    scopus 로고
    • Adaptive filtering with adaptive p-power error criterion
    • Zhu Y., Chen B., Hu J. Adaptive filtering with adaptive p-power error criterion. Int. J. Innov. Comput. Inf. Control 2011, 7(4):1725-1738.
    • (2011) Int. J. Innov. Comput. Inf. Control , vol.7 , Issue.4 , pp. 1725-1738
    • Zhu, Y.1    Chen, B.2    Hu, J.3
  • 190
    • 84863272885 scopus 로고    scopus 로고
    • Stochastic information gradient algorithm with generalized Gaussian distribution model
    • Chen B., Principe J.C., Hu J., Zhu Y. Stochastic information gradient algorithm with generalized Gaussian distribution model. J. Circuit. Syst. Comput. 2012, 21(1).
    • (2012) J. Circuit. Syst. Comput. , vol.21 , Issue.1
    • Chen, B.1    Principe, J.C.2    Hu, J.3    Zhu, Y.4
  • 191
    • 0001668641 scopus 로고
    • Parametric generalized Gaussian density estimation
    • Varanasi M.K., Aazhang B. Parametric generalized Gaussian density estimation. J. Acoust. Soc. Amer. 1989, 86(4):1404-1415.
    • (1989) J. Acoust. Soc. Amer. , vol.86 , Issue.4 , pp. 1404-1415
    • Varanasi, M.K.1    Aazhang, B.2
  • 192
    • 21744441138 scopus 로고    scopus 로고
    • Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling
    • Kokkinakis K., Nandi A.K. Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling. Signal Process 2005, 85:1852-1858.
    • (2005) Signal Process , vol.85 , pp. 1852-1858
    • Kokkinakis, K.1    Nandi, A.K.2
  • 193
    • 38949162905 scopus 로고    scopus 로고
    • A fixed-point minimum error entropy algorithm, in: Proceedings of the Sixteenth IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing
    • S. Han, J.C. Principe, A fixed-point minimum error entropy algorithm, in: Proceedings of the Sixteenth IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006, pp.167-172.
    • (2006) , pp. 167-172
    • Han, S.1    Principe, J.C.2
  • 194
    • 84904028898 scopus 로고    scopus 로고
    • A family of minimum Renyi's error entropy algorithm for information processing, Doctoral dissertation, University of Florida
    • S. Han, A family of minimum Renyi's error entropy algorithm for information processing, Doctoral dissertation, University of Florida, 2007.
    • (2007)
    • Han, S.1
  • 195
    • 84947626826 scopus 로고
    • Recursive hybrid algorithm for non-linear system identification using radial basis function networks
    • Chen S., Billings S.A., Grant P.M. Recursive hybrid algorithm for non-linear system identification using radial basis function networks. Int. J. Control. 1992, 55:1051-1070.
    • (1992) Int. J. Control. , vol.55 , pp. 1051-1070
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 198
    • 0025508757 scopus 로고
    • Saturation effects in LMS adaptive echo cancellation for binary data
    • Bershad N.J., Bonnet M. Saturation effects in LMS adaptive echo cancellation for binary data. IEEE Trans. Acoust. Speech Signal Process 1990, 38(10):1687-1696.
    • (1990) IEEE Trans. Acoust. Speech Signal Process , vol.38 , Issue.10 , pp. 1687-1696
    • Bershad, N.J.1    Bonnet, M.2
  • 199
    • 0032260231 scopus 로고    scopus 로고
    • Convergence analysis of the LMS algorithm with a general error nonlinearity and an iid input
    • Proceedings of the Asilomar Conference on Signals, Systems, and Computers
    • T.Y. Al-Naffouri, A. Zerguine, M. Bettayeb, Convergence analysis of the LMS algorithm with a general error nonlinearity and an iid input, in: Proceedings of the Asilomar Conference on Signals, Systems, and Computers, vol. 1, 1998, pp. 556-559.
    • (1998) , vol.1 , pp. 556-559
    • Al-Naffouri, T.Y.1    Zerguine, A.2    Bettayeb, M.3
  • 200
    • 75149113421 scopus 로고    scopus 로고
    • Stochastic gradient algorithm under (h,φ)-entropy criterion
    • Chen B., Hu J., Pu L., Sun Z. Stochastic gradient algorithm under (h,φ)-entropy criterion. Circuits Syst. Signal Process 2007, 26(6):941-960.
    • (2007) Circuits Syst. Signal Process , vol.26 , Issue.6 , pp. 941-960
    • Chen, B.1    Hu, J.2    Pu, L.3    Sun, Z.4
  • 201
    • 0024013606 scopus 로고
    • MVSE adaptive filtering subject to a constraint on MSE
    • Gibson J.D., Gray S.D. MVSE adaptive filtering subject to a constraint on MSE. IEEE Trans. Circuits Syst. 1988, 35(5):603-608.
    • (1988) IEEE Trans. Circuits Syst. , vol.35 , Issue.5 , pp. 603-608
    • Gibson, J.D.1    Gray, S.D.2
  • 204
    • 84904028891 scopus 로고
    • Nonlinear dynamic modeling with artificial neural networks, Ph.D. dissertation, University of Florida, Gainesville
    • J.M. Kuo, Nonlinear dynamic modeling with artificial neural networks, Ph.D. dissertation, University of Florida, Gainesville, 1993.
    • (1993)
    • Kuo, J.M.1
  • 207
    • 84952527343 scopus 로고
    • Time series for count data or qualitative observations
    • Harvey A.C., Fernandez C. Time series for count data or qualitative observations. J. Bus. Econ. Stat. 1989, 7:407-417.
    • (1989) J. Bus. Econ. Stat. , vol.7 , pp. 407-417
    • Harvey, A.C.1    Fernandez, C.2
  • 208
    • 84986870293 scopus 로고
    • First order integer-valued autoregressive INAR(1) process
    • Al-Osh M., Alzaid A. First order integer-valued autoregressive INAR(1) process. J. Time Series Anal. 1987, 8(3):261-275.
    • (1987) J. Time Series Anal. , vol.8 , Issue.3 , pp. 261-275
    • Al-Osh, M.1    Alzaid, A.2
  • 209
    • 0035387571 scopus 로고    scopus 로고
    • Estimation in integer-valued moving average models
    • Brannas K., Hall A. Estimation in integer-valued moving average models. Appl. Stoch. Model. Bus. Ind. 2001, 17(3):277-291.
    • (2001) Appl. Stoch. Model. Bus. Ind. , vol.17 , Issue.3 , pp. 277-291
    • Brannas, K.1    Hall, A.2
  • 210
    • 57049122901 scopus 로고    scopus 로고
    • Thinning operations for modeling time series of counts-a survey
    • Weis C.H. Thinning operations for modeling time series of counts-a survey. AStA Adv. Stat. Anal. 2008, 92(3):319-341.
    • (2008) AStA Adv. Stat. Anal. , vol.92 , Issue.3 , pp. 319-341
    • Weis, C.H.1
  • 211
    • 78751649991 scopus 로고    scopus 로고
    • Δ-Entropy: definition, properties and applications in system identification with quantized data
    • Chen B., Zhu Y., Hu J., Principe J.C. Δ-Entropy: definition, properties and applications in system identification with quantized data. Inf. Sci. 2011, 181(7):1384-1402.
    • (2011) Inf. Sci. , vol.181 , Issue.7 , pp. 1384-1402
    • Chen, B.1    Zhu, Y.2    Hu, J.3    Principe, J.C.4
  • 212
    • 0030193486 scopus 로고    scopus 로고
    • Minimum entropy of error estimation for discrete random variables
    • Janzura M., Koski T., Otahal A. Minimum entropy of error estimation for discrete random variables. IEEE Trans. Inf. Theory 1996, 42(4):1193-1201.
    • (1996) IEEE Trans. Inf. Theory , vol.42 , Issue.4 , pp. 1193-1201
    • Janzura, M.1    Koski, T.2    Otahal, A.3
  • 213
    • 33748288090 scopus 로고    scopus 로고
    • Error entropy in classification problems: a univariate data analysis
    • Silva L.M., Felgueiras C.S., Alexandre L.A., Marques J. Error entropy in classification problems: a univariate data analysis. Neural Comput. 2006, 18:2036-2061.
    • (2006) Neural Comput. , vol.18 , pp. 2036-2061
    • Silva, L.M.1    Felgueiras, C.S.2    Alexandre, L.A.3    Marques, J.4
  • 214
    • 56549107038 scopus 로고    scopus 로고
    • Continuously differentiable sample-spacing entropy estimation
    • Ozertem U., Uysal I., Erdogmus D. Continuously differentiable sample-spacing entropy estimation. IEEE Trans. Neural Netw. 2008, 19:1978-1984.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , pp. 1978-1984
    • Ozertem, U.1    Uysal, I.2    Erdogmus, D.3
  • 216
    • 0001727688 scopus 로고
    • Identification in parametric models
    • Rothenberg T.J. Identification in parametric models. Econometrica 1971, 39:577-591.
    • (1971) Econometrica , vol.39 , pp. 577-591
    • Rothenberg, T.J.1
  • 217
    • 0017242299 scopus 로고
    • Identifiability of linear and nonlinear dynamic systems
    • Grewal M.S., Glover K. Identifiability of linear and nonlinear dynamic systems. IEEE Trans. Automat. Control 1976, 21(6):833-837.
    • (1976) IEEE Trans. Automat. Control , vol.21 , Issue.6 , pp. 833-837
    • Grewal, M.S.1    Glover, K.2
  • 218
    • 0015414737 scopus 로고
    • On the identifiability of parameters
    • Tse E., Anton J.J. On the identifiability of parameters. IEEE Trans. Automat. Control 1972, 17(5):637-646.
    • (1972) IEEE Trans. Automat. Control , vol.17 , Issue.5 , pp. 637-646
    • Tse, E.1    Anton, J.J.2
  • 219
    • 0016347761 scopus 로고
    • Parameterizations of linear dynamical systems: canonical forms and identifiability
    • Glover K., Willems J.C. Parameterizations of linear dynamical systems: canonical forms and identifiability. IEEE Trans. Automat. Control 1974, 19(6):640-646.
    • (1974) IEEE Trans. Automat. Control , vol.19 , Issue.6 , pp. 640-646
    • Glover, K.1    Willems, J.C.2
  • 223
    • 0026914305 scopus 로고
    • Distribution estimation consistent in total variation and in two types of information divergence
    • Barron A.R., Gyorfi L., van der Meulen E.C. Distribution estimation consistent in total variation and in two types of information divergence. IEEE Trans. Inf. Theory 1992, 38(5):1437-1454.
    • (1992) IEEE Trans. Inf. Theory , vol.38 , Issue.5 , pp. 1437-1454
    • Barron, A.R.1    Gyorfi, L.2    van der Meulen, E.C.3
  • 225
    • 0030388521 scopus 로고    scopus 로고
    • Towards fully probabilistic control design
    • Karny M. Towards fully probabilistic control design. Automatica 1996, 32(12):1719-1722.
    • (1996) Automatica , vol.32 , Issue.12 , pp. 1719-1722
    • Karny, M.1
  • 226
    • 32644443998 scopus 로고    scopus 로고
    • Fully probabilistic control design
    • Karny M., Guy T.V. Fully probabilistic control design. Syst. Control Lett. 2006, 55:259-265.
    • (2006) Syst. Control Lett. , vol.55 , pp. 259-265
    • Karny, M.1    Guy, T.V.2
  • 227
    • 0033345674 scopus 로고    scopus 로고
    • Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability
    • Wang H. Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability. IEEE Trans. Automat. Control 1999, 44(11):2103-2107.
    • (1999) IEEE Trans. Automat. Control , vol.44 , Issue.11 , pp. 2103-2107
    • Wang, H.1
  • 229
    • 0037986590 scopus 로고    scopus 로고
    • A rational spline model approximation and control of output probability density functions for dynamic stochastic systems
    • Wang H., Yue H. A rational spline model approximation and control of output probability density functions for dynamic stochastic systems. Trans. Inst. Meas. Control 2003, 25(2):93-105.
    • (2003) Trans. Inst. Meas. Control , vol.25 , Issue.2 , pp. 93-105
    • Wang, H.1    Yue, H.2
  • 230
    • 0030834659 scopus 로고    scopus 로고
    • Statistical reference criteria for adaptive signal processing in digital communications
    • Sala-Alvarez J., Vázquez-Grau G. Statistical reference criteria for adaptive signal processing in digital communications. IEEE Trans. Signal Process 1997, 45(1):14-31.
    • (1997) IEEE Trans. Signal Process , vol.45 , Issue.1 , pp. 14-31
    • Sala-Alvarez, J.1    Vázquez-Grau, G.2
  • 231
    • 0027632550 scopus 로고
    • Kullback-Leibler information measure for studying convergence rates of densities and distributions
    • Meyer M.E., Gokhale D.V. Kullback-Leibler information measure for studying convergence rates of densities and distributions. IEEE Trans. Inf. Theory 1993, 39(4):1401-1404.
    • (1993) IEEE Trans. Inf. Theory , vol.39 , Issue.4 , pp. 1401-1404
    • Meyer, M.E.1    Gokhale, D.V.2
  • 232
    • 85128566821 scopus 로고    scopus 로고
    • Recursive identification of switched ARX hybrid models: exponential convergence and persistence of excitation, Proceedings of the Forty-Third IEEE Conference on Decision and Control (CDC)
    • R. Vidal, B. Anderson, Recursive identification of switched ARX hybrid models: exponential convergence and persistence of excitation, Proceedings of the Forty-Third IEEE Conference on Decision and Control (CDC), 2004.
    • (2004)
    • Vidal, R.1    Anderson, B.2
  • 233
    • 84904028888 scopus 로고    scopus 로고
    • Global optimization algorithms for adaptive infinite impulse response filters, Ph.D. Dissertation, University of Florida
    • C.-A. Lai, Global optimization algorithms for adaptive infinite impulse response filters, Ph.D. Dissertation, University of Florida, 2002.
    • (2002)
    • Lai, C.-A.1
  • 234
    • 79961018999 scopus 로고    scopus 로고
    • Adaptive FIR filtering under minimum error/input information criterion. The Seventeenth IFAC Word Conference, Seoul, Korea, July 2008
    • B. Chen, J. Hu, H. Li, Z. Sun, Adaptive FIR filtering under minimum error/input information criterion. The Seventeenth IFAC Word Conference, Seoul, Korea, July 2008, pp. 3539-3543.
    • Chen, B.1    Hu, J.2    Li, H.3    Sun, Z.4
  • 237
    • 0030417779 scopus 로고    scopus 로고
    • Equivariant adaptive source separation
    • Cardoso J.F., Laheld B.H. Equivariant adaptive source separation. IEEE Trans. Signal Process 1996, 44(12):3017-3030.
    • (1996) IEEE Trans. Signal Process , vol.44 , Issue.12 , pp. 3017-3030
    • Cardoso, J.F.1    Laheld, B.H.2
  • 239
    • 0033101613 scopus 로고    scopus 로고
    • Stochastic analysis of gradient adaptive identification of nonlinear systems with memory for Gaussian data and noisy input and output measurements
    • Bershad N.J., Celka P., Vesin J.M. Stochastic analysis of gradient adaptive identification of nonlinear systems with memory for Gaussian data and noisy input and output measurements. IEEE Trans. Signal Process 1999, 47:675-689.
    • (1999) IEEE Trans. Signal Process , vol.47 , pp. 675-689
    • Bershad, N.J.1    Celka, P.2    Vesin, J.M.3
  • 240
    • 0035249242 scopus 로고    scopus 로고
    • Stochastic gradient identification of polynomial Wiener systems: analysis and application
    • Celka P., Bershad N.J., Vesin J.M. Stochastic gradient identification of polynomial Wiener systems: analysis and application. IEEE Trans. Signal Process 2001, 49:301-313.
    • (2001) IEEE Trans. Signal Process , vol.49 , pp. 301-313
    • Celka, P.1    Bershad, N.J.2    Vesin, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.