메뉴 건너뛰기




Volumn 233, Issue , 2013, Pages 15-24

Mining numerical association rules via multi-objective genetic algorithms

Author keywords

Comprehensibility; Confidence; Interestingness; Multi objective genetic algorithms; Numerical association rule; Rough value

Indexed keywords

COMPREHENSIBILITY; CONFIDENCE; INTERESTINGNESS; MULTI-OBJECTIVE GENETIC ALGORITHM; ROUGH VALUE;

EID: 84875225704     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.01.028     Document Type: Article
Times cited : (98)

References (36)
  • 1
    • 34548489941 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization
    • Advanced Information and Knowledge Processing Springer Berlin Heidelberg
    • A. Abraham, and L. Jain Evolutionary multiobjective optimization Evolutionary Multiobjective Optimization Advanced Information and Knowledge Processing 2005 Springer Berlin Heidelberg 1 6
    • (2005) Evolutionary Multiobjective Optimization , pp. 1-6
    • Abraham, A.1    Jain, L.2
  • 2
    • 0027621699 scopus 로고    scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM
    • R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in: ACM SIGMOD Record, vol. 22, ACM, pp. 207-216.
    • ACM SIGMOD Record , vol.22 , pp. 207-216
    • R. Agrawal1
  • 4
    • 29444447081 scopus 로고    scopus 로고
    • An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules, Soft Computing-A Fusion of Foundations
    • B. Alataş, and E. Akin An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules, Soft Computing-A Fusion of Foundations Methodologies and Applications 10 2006 230 237
    • (2006) Methodologies and Applications , vol.10 , pp. 230-237
    • Alataş, B.1    Akin, E.2
  • 5
    • 49049095695 scopus 로고    scopus 로고
    • Rough particle swarm optimization and its applications in data mining, Soft Computing-A Fusion of Foundations
    • B. Alatas, and E. Akin Rough particle swarm optimization and its applications in data mining, Soft Computing-A Fusion of Foundations Methodologies and Applications 12 2008 1205 1218
    • (2008) Methodologies and Applications , vol.12 , pp. 1205-1218
    • Alatas, B.1    Akin, E.2
  • 6
    • 67349192595 scopus 로고    scopus 로고
    • Chaotically encoded particle swarm optimization algorithm and its applications
    • B. Alatas, and E. Akin Chaotically encoded particle swarm optimization algorithm and its applications Chaos, Solitons & Fractals 41 2009 939 950
    • (2009) Chaos, Solitons & Fractals , vol.41 , pp. 939-950
    • Alatas, B.1    Akin, E.2
  • 7
    • 34548472851 scopus 로고    scopus 로고
    • Modenar: Multi-objective differential evolution algorithm for mining numeric association rules
    • B. Alatas, E. Akin, and A. Karci Modenar: multi-objective differential evolution algorithm for mining numeric association rules Applied Soft Computing 8 2008 646 656
    • (2008) Applied Soft Computing , vol.8 , pp. 646-656
    • Alatas, B.1    Akin, E.2    Karci, A.3
  • 15
    • 2442699339 scopus 로고    scopus 로고
    • Multi-objective rule mining using genetic algorithms
    • A. Ghosh, and B. Nath Multi-objective rule mining using genetic algorithms Information Sciences 163 2004 123 133
    • (2004) Information Sciences , vol.163 , pp. 123-133
    • Ghosh, A.1    Nath, B.2
  • 18
    • 17644408058 scopus 로고    scopus 로고
    • Genetic algorithm based framework for mining fuzzy association rules
    • M. Kaya, and R. Alhajj Genetic algorithm based framework for mining fuzzy association rules Fuzzy Sets and Systems 152 2005 587 601
    • (2005) Fuzzy Sets and Systems , vol.152 , pp. 587-601
    • Kaya, M.1    Alhajj, R.2
  • 19
    • 48649089331 scopus 로고    scopus 로고
    • An information-theoretic approach to quantitative association rule mining
    • Y. Ke, J. Cheng, and W. Ng An information-theoretic approach to quantitative association rule mining Knowledge and Information Systems 16 2008 213 244
    • (2008) Knowledge and Information Systems , vol.16 , pp. 213-244
    • Ke, Y.1    Cheng, J.2    Ng, W.3
  • 20
    • 84874669053 scopus 로고    scopus 로고
    • A genetic algorithm with entropy based probabilistic initialization and memory for automated rule mining
    • D. Kumar A genetic algorithm with entropy based probabilistic initialization and memory for automated rule mining Advances in Computer Science and Information Technology 2011 604 613
    • (2011) Advances in Computer Science and Information Technology , pp. 604-613
    • Kumar, D.1
  • 21
    • 78049238133 scopus 로고    scopus 로고
    • Novel alarm correlation analysis system based on association rules mining in telecommunication networks
    • T. Li, and X. Li Novel alarm correlation analysis system based on association rules mining in telecommunication networks Information Sciences 180 2010 2960 2978
    • (2010) Information Sciences , vol.180 , pp. 2960-2978
    • Li, T.1    Li, X.2
  • 22
    • 0036565197 scopus 로고    scopus 로고
    • Pincer-search: An efficient algorithm for discovering the maximum frequent set
    • D. Lin, and Z. Kedem Pincer-search: an efficient algorithm for discovering the maximum frequent set IEEE Transactions on Knowledge and Data Engineering 2002 553 566
    • (2002) IEEE Transactions on Knowledge and Data Engineering , pp. 553-566
    • Lin, D.1    Kedem, Z.2
  • 23
    • 0034262326 scopus 로고    scopus 로고
    • Analyzing the subjective interestingness of association rules
    • B. Liu, W. Hsu, S. Chen, and Y. Ma Analyzing the subjective interestingness of association rules IEEE Intelligent Systems 2000 47 55
    • (2000) IEEE Intelligent Systems , pp. 47-55
    • Liu, B.1    Hsu, W.2    Chen, S.3    Ma, Y.4
  • 26
    • 78449271035 scopus 로고    scopus 로고
    • Using ontologies to facilitate post-processing of association rules by domain experts
    • G. Mansingh, K.M. Osei-Bryson, and H. Reichgelt Using ontologies to facilitate post-processing of association rules by domain experts Information Sciences 181 2011 419 434
    • (2011) Information Sciences , vol.181 , pp. 419-434
    • Mansingh, G.1    Osei-Bryson, K.M.2    Reichgelt, H.3
  • 32
    • 77956392733 scopus 로고    scopus 로고
    • Toward boosting distributed association rule mining by data de-clustering
    • F.S. Tseng, Y.H. Kuo, and Y.M. Huang Toward boosting distributed association rule mining by data de-clustering Information Sciences 180 2010 4263 4289
    • (2010) Information Sciences , vol.180 , pp. 4263-4289
    • Tseng, F.S.1    Kuo, Y.H.2    Huang, Y.M.3
  • 34
    • 56349170668 scopus 로고    scopus 로고
    • Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support
    • X. Yan, C. Zhang, and S. Zhang Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support Expert Systems with Applications 36 2009 3066 3076
    • (2009) Expert Systems with Applications , vol.36 , pp. 3066-3076
    • Yan, X.1    Zhang, C.2    Zhang, S.3
  • 35
    • 77956619716 scopus 로고    scopus 로고
    • Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence
    • H.R. Qodmanan, M. Nasiri, and B. Minaei-Bidgoli Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence Expert Systems with applications 38 1 2011 288 298
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 288-298
    • Qodmanan, H.R.1    Nasiri, M.2    Minaei-Bidgoli, B.3
  • 36
    • 84878782976 scopus 로고    scopus 로고
    • Deriving support threshold values and membership functions using the multiple-level cluster-based master-slave IFG approach
    • M. Asadollahpoor-Chamazi, B. Minaei-Bidgoli, M. Nasiri, Deriving support threshold values and membership functions using the multiple-level cluster-based master-slave IFG approach, Soft Computing (2013), http://dx.doi.org/doi/10. 1007/s00500-012-0973-7.
    • (2013) Soft Computing
    • Asadollahpoor-Chamazi, M.1    Minaei-Bidgoli, B.2    Nasiri, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.