메뉴 건너뛰기




Volumn 9781461463092, Issue , 2013, Pages 9-50

A survey of model-based sensor data acquisition and management

Author keywords

data acquisition; data cleaning; data compression; model based techniques; query processing

Indexed keywords

DATA COMPRESSION; QUERY PROCESSING; SENSOR NETWORKS; SURVEYS;

EID: 84894221594     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-6309-2_2     Document Type: Chapter
Times cited : (46)

References (73)
  • 2
    • 56449087483 scopus 로고    scopus 로고
    • Energy conservation in wireless sensor networks: A survey
    • G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3):537-568, 2009.
    • (2009) Ad Hoc Networks , vol.7 , Issue.3 , pp. 537-568
    • Anastasi, G.1    Conti, M.2    Di Francesco, M.3    Passarella, A.4
  • 3
    • 84857213799 scopus 로고    scopus 로고
    • Efficiently maintaining distributed model-based views on real-time data streams
    • A. Arion, H. Jeung, and K. Aberer. Efficiently maintaining distributed model-based views on real-time data streams. In GLOBECOM, pages 1-6, 2011.
    • (2011) GLOBECOM , pp. 1-6
    • Arion, A.1    Jeung, H.2    Aberer, K.3
  • 4
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking
    • M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188, 2002.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 5
    • 49549086342 scopus 로고    scopus 로고
    • MIST: Distributed indexing and querying in sensor networks using statistical models
    • A. Bhattacharya, A. Meka, and A. Singh. MIST: Distributed indexing and querying in sensor networks using statistical models. In VLDB, pages 854-865, 2007.
    • (2007) VLDB , pp. 854-865
    • Bhattacharya, A.1    Meka, A.2    Singh, A.3
  • 7
    • 0032688141 scopus 로고    scopus 로고
    • Efficient time series matching by wavelets
    • K. Chan and W. Fu. Efficient time series matching by wavelets. In ICDE, pages 126-133, 1999.
    • (1999) ICDE , pp. 126-133
    • Chan, K.1    Fu, W.2
  • 9
    • 1142291577 scopus 로고    scopus 로고
    • Evaluating probabilistic queries over imprecise data
    • R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In SIGMOD, pages 551-562, 2003.
    • (2003) SIGMOD , pp. 551-562
    • Cheng, R.1    Kalashnikov, D.2    Prabhakar, S.3
  • 10
    • 33749548584 scopus 로고    scopus 로고
    • Evaluation of probabilistic queries over imprecise data in constantly-evolving environments
    • R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluation of probabilistic queries over imprecise data in constantly-evolving environments. Information Systems, 32(1):104-130, 2007.
    • (2007) Information Systems , vol.32 , Issue.1 , pp. 104-130
    • Cheng, R.1    Kalashnikov, D.2    Prabhakar, S.3
  • 11
    • 33745594341 scopus 로고    scopus 로고
    • U-DBMS: A database system for managing constantly-evolving data
    • R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system for managing constantly-evolving data. In VLDB, pages 1271-1274, 2005.
    • (2005) VLDB , pp. 1271-1274
    • Cheng, R.1    Singh, S.2    Prabhakar, S.3
  • 12
    • 33749644725 scopus 로고    scopus 로고
    • Approximate data collection in sensor networks using probabilistic models
    • D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate data collection in sensor networks using probabilistic models. In ICDE, pages 48-48, 2006.
    • (2006) ICDE , pp. 48-48
    • Chu, D.1    Deshpande, A.2    Hellerstein, J.3    Hong, W.4
  • 13
    • 85026920229 scopus 로고    scopus 로고
    • Data cleaning using belief propagation
    • F. Chu, Y. Wang, S. Parker, and C. Zaniolo. Data cleaning using belief propagation. In IQIS, pages 99-104, 2005.
    • (2005) IQIS , pp. 99-104
    • Chu, F.1    Wang, Y.2    Parker, S.3    Zaniolo, C.4
  • 14
    • 3142661923 scopus 로고    scopus 로고
    • Compressing historical information in sensor networks
    • A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing historical information in sensor networks. In SIGMOD, pages 527- 538, 2004.
    • (2004) SIGMOD , pp. 527-538
    • Deligiannakis, A.1    Kotidis, Y.2    Roussopoulos, N.3
  • 16
    • 28444450448 scopus 로고    scopus 로고
    • Exploiting correlated attributes in acquisitional query processing
    • A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting correlated attributes in acquisitional query processing. In ICDE, pages 143-154, 2005.
    • (2005) ICDE , pp. 143-154
    • Deshpande, A.1    Guestrin, C.2    Hong, W.3    Madden, S.4
  • 18
    • 34247346862 scopus 로고    scopus 로고
    • MauveDB: Supporting model-based user views in database systems
    • A. Deshpande and S. Madden. MauveDB: Supporting model-based user views in database systems. In SIGMOD, pages 73-84, 2006.
    • (2006) SIGMOD , pp. 73-84
    • Deshpande, A.1    Madden, S.2
  • 20
    • 80052490550 scopus 로고    scopus 로고
    • Online piece-wise linear approximation of numerical streams with precision guarantees
    • H. Elmeleegy, A. Elmagarmid, E. Cecchet, W. Aref, and W. Zwaenepoel. Online piece-wise linear approximation of numerical streams with precision guarantees. In VLDB, pages 145-156, 2009.
    • (2009) VLDB , pp. 145-156
    • Elmeleegy, H.1    Elmagarmid, A.2    Cecchet, E.3    Aref, W.4    Zwaenepoel, W.5
  • 21
    • 1542376950 scopus 로고    scopus 로고
    • Cleaning and querying noisy sensors
    • E. Elnahrawy and B. Nath. Cleaning and querying noisy sensors. In WSNA, pages 78-87, 2003.
    • (2003) WSNA , pp. 78-87
    • Elnahrawy, E.1    Nath, B.2
  • 22
    • 0028447023 scopus 로고
    • Fast subsequence matching in time-series databases
    • C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In SIGMOD, pages 419-429, 1994.
    • (1994) SIGMOD , pp. 419-429
    • Faloutsos, C.1    Ranganathan, M.2    Manolopoulos, Y.3
  • 23
    • 70849127921 scopus 로고    scopus 로고
    • ORDEN: Outlier region detection and exploration in sensor networks
    • C. Franke and M. Gertz. ORDEN: Outlier region detection and exploration in sensor networks. In SIGMOD, pages 1075-1077, 2009.
    • (2009) SIGMOD , pp. 1075-1077
    • Franke, C.1    Gertz, M.2
  • 24
    • 70849135402 scopus 로고    scopus 로고
    • GAMPS: Compressing multi sensor data by grouping and amplitude scaling
    • S. Gandhi, S. Nath, S. Suri, and J. Liu. GAMPS: Compressing multi sensor data by grouping and amplitude scaling. In SIGMOD, pages 771-784, 2009.
    • (2009) SIGMOD , pp. 771-784
    • Gandhi, S.1    Nath, S.2    Suri, S.3    Liu, J.4
  • 25
    • 20544440223 scopus 로고    scopus 로고
    • DIMENSIONS: Why do we need a new data handling architecture for sensor networks? in
    • D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need a new data handling architecture for sensor networks? In SIGCOMM, pages 143-148, 2003.
    • (2003) SIGCOMM , pp. 143-148
    • Ganesan, D.1    Estrin, D.2    Heidemann, J.3
  • 26
    • 18844409386 scopus 로고    scopus 로고
    • An evaluation of multi-resolution storage for sensor networks
    • D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and H. J. An evaluation of multi-resolution storage for sensor networks. In SenSys, pages 89-102, 2003.
    • (2003) SenSys , pp. 89-102
    • Ganesan, D.1    Greenstein, B.2    Perelyubskiy, D.3    Estrin, D.4
  • 27
    • 3042820611 scopus 로고    scopus 로고
    • Distributed regression: An efficient framework for modeling sensor network data
    • C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed regression: An efficient framework for modeling sensor network data. In IPSN, pages 1-10, 2004.
    • (2004) IPSN , pp. 1-10
    • Guestrin, C.1    Bodik, P.2    Thibaux, R.3    Paskin, M.4    Madden, S.5
  • 29
    • 3142770653 scopus 로고    scopus 로고
    • Adaptive stream resource management using Kalman Filters
    • A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource management using Kalman Filters. In SIGMOD, pages 11-22, 2004.
    • (2004) SIGMOD , pp. 11-22
    • Jain, A.1    Chang, E.2    Wang, Y.-F.3
  • 30
    • 33749611375 scopus 로고    scopus 로고
    • A pipelined framework for online cleaning of sensor data streams
    • S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. A pipelined framework for online cleaning of sensor data streams. In ICDE, page 140, 2006.
    • (2006) ICDE , pp. 140
    • Jeffery, S.1    Alonso, G.2    Franklin, M.3    Hong, W.4    Widom, J.5
  • 32
    • 35448972745 scopus 로고    scopus 로고
    • Adaptive cleaning for RFID data streams
    • S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive cleaning for RFID data streams. In VLDB, pages 163-174, 2006.
    • (2006) VLDB , pp. 163-174
    • Jeffery, S.1    Garofalakis, M.2    Franklin, M.3
  • 33
    • 52649107508 scopus 로고    scopus 로고
    • Online filtering, smoothing and probabilistic modeling of streaming data
    • B. Kanagal and A. Deshpande. Online filtering, smoothing and probabilistic modeling of streaming data. In ICDE, pages 1160- 1169, 2008.
    • (2008) ICDE , pp. 1160-1169
    • Kanagal, B.1    Deshpande, A.2
  • 34
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time series. In ICDM, pages 289-296, 2001.
    • (2001) ICDM , pp. 289-296
    • Keogh, E.1    Chu, S.2    Hart, D.3    Pazzani, M.4
  • 35
    • 85150810448 scopus 로고    scopus 로고
    • An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
    • E. Keogh and M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In SIGKDD, pages 239-241, 1998.
    • (1998) SIGKDD , pp. 239-241
    • Keogh, E.1    Pazzani, M.2
  • 36
    • 77950474555 scopus 로고    scopus 로고
    • Incorporating quality aspects in sensor data streams
    • A. Klein. Incorporating quality aspects in sensor data streams. In PIKM, pages 77-84, 2007.
    • (2007) PIKM , pp. 77-84
    • Klein, A.1
  • 37
    • 72349091820 scopus 로고    scopus 로고
    • Representing data quality in sensor data streaming environments
    • A. Klein and W. Lehner. Representing data quality in sensor data streaming environments. Journal of Data and Information Quality, 1(2):1-28, 2009.
    • (2009) Journal of Data and Information Quality , vol.1 , Issue.2 , pp. 1-28
    • Klein, A.1    Lehner, W.2
  • 38
    • 28444434729 scopus 로고    scopus 로고
    • Snapshot queries: Towards data-centric sensor networks
    • Y. Kotidis. Snapshot queries: Towards data-centric sensor networks. In ICDE, pages 131-142, 2005.
    • (2005) ICDE , pp. 131-142
    • Kotidis, Y.1
  • 39
    • 0344496679 scopus 로고    scopus 로고
    • Capturing sensor-generated time series with quality guarantees
    • March
    • I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series with quality guarantees. In ICDE, pages 429-440, March 2003.
    • (2003) ICDE , pp. 429-440
    • Lazaridis, I.1    Mehrotra, S.2
  • 40
    • 34547920743 scopus 로고    scopus 로고
    • Adaptive model selection for time series prediction in wireless sensor networks
    • Y. Le Borgne, S. Santini, and G. Bontempi. Adaptive model selection for time series prediction in wireless sensor networks. Signal Processing, 87(12):3010-3020, 2007.
    • (2007) Signal Processing , vol.87 , Issue.12 , pp. 3010-3020
    • Le Borgne, Y.1    Santini, S.2    Bontempi, G.3
  • 41
    • 69249248125 scopus 로고    scopus 로고
    • PRESTO: Feedback-driven data management in sensor networks
    • M. Li, D. Ganesan, and P. Shenoy. PRESTO: Feedback-driven data management in sensor networks. IEEE/ACM Transactions on Networking (TON), 17(4):1256-1269, 2009.
    • (2009) IEEE/ACM Transactions on Networking (TON) , vol.17 , Issue.4 , pp. 1256-1269
    • Li, M.1    Ganesan, D.2    Shenoy, P.3
  • 44
    • 1142291591 scopus 로고    scopus 로고
    • The design of an acquisitional query processor for sensor networks
    • S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an acquisitional query processor for sensor networks. In SIGMOD, pages 491-502, 2003.
    • (2003) SIGMOD , pp. 491-502
    • Madden, S.1    Franklin, M.2    Hellerstein, J.3    Hong, W.4
  • 45
    • 23944487783 scopus 로고    scopus 로고
    • TinyDB: An acquisitional query processing system for sensor networks
    • S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acquisitional query processing system for sensor networks. TODS, 30(1):122-173, 2005.
    • (2005) TODS , vol.30 , Issue.1 , pp. 122-173
    • Madden, S.1    Franklin, M.2    Hellerstein, J.3    Hong, W.4
  • 46
    • 77954714416 scopus 로고    scopus 로고
    • ERACER: A database approach for statistical inference and data cleaning
    • C. Mayfield, J. Neville, and S. Prabhakar. ERACER: A database approach for statistical inference and data cleaning. In SIGMOD, pages 75-86, 2010.
    • (2010) SIGMOD , pp. 75-86
    • Mayfield, C.1    Neville, J.2    Prabhakar, S.3
  • 47
    • 1142291592 scopus 로고    scopus 로고
    • Adaptive filters for continuous queries over distributed data streams
    • C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data streams. In SIGMOD, pages 563-574, 2003.
    • (2003) SIGMOD , pp. 563-574
    • Olston, C.1    Jiang, J.2    Widom, J.3
  • 48
  • 49
    • 33745631543 scopus 로고    scopus 로고
    • Streaming pattern discovery in multiple time-series
    • S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In VLDB, pages 697-708, 2005.
    • (2005) VLDB , pp. 697-708
    • Papadimitriou, S.1    Sun, J.2    Faloutsos, C.3
  • 50
    • 82055165162 scopus 로고    scopus 로고
    • Towards online multimodel approximation of time series
    • T. Papaioannou, M. Riahi, and K. Aberer. Towards online multimodel approximation of time series. In IEEE MDM, pages 33-38, 2011.
    • (2011) IEEE MDM , pp. 33-38
    • Papaioannou, T.1    Riahi, M.2    Aberer, K.3
  • 51
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12):3448-3470, 2007.
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 52
    • 38149034383 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for sensor network data cleaning
    • A. Petrosino and A. Staiano. A neuro-fuzzy approach for sensor network data cleaning. In KES, pages 140-147, 2007.
    • (2007) KES , pp. 140-147
    • Petrosino, A.1    Staiano, A.2
  • 53
    • 0036206371 scopus 로고    scopus 로고
    • Similarity search over time series data using wavelets
    • I. Popivanov. Similarity search over time series data using wavelets. In ICDE, pages 212-221, 2002.
    • (2002) ICDE , pp. 212-221
    • Popivanov, I.1
  • 54
    • 57149127334 scopus 로고    scopus 로고
    • A deferred cleansing method for RFID data analytics
    • J. Rao, S. Doraiswamy, H. Thakkar, and L. Colby. A deferred cleansing method for RFID data analytics. In VLDB, pages 175-186, 2006.
    • (2006) VLDB , pp. 175-186
    • Rao, J.1    Doraiswamy, S.2    Thakkar, H.3    Colby, L.4
  • 55
    • 57049160857 scopus 로고    scopus 로고
    • Event queries on correlated probabilistic streams
    • C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on correlated probabilistic streams. In SIGMOD, pages 715-728, 2008.
    • (2008) SIGMOD , pp. 715-728
    • Ré, C.1    Letchner, J.2    Balazinksa, M.3    Suciu, D.4
  • 57
    • 79957843470 scopus 로고    scopus 로고
    • Creating probabilistic databases from imprecise time-series data
    • S. Sathe, H. Jeung, and K. Aberer. Creating probabilistic databases from imprecise time-series data. In ICDE, pages 327-338, 2011.
    • (2011) ICDE , pp. 327-338
    • Sathe, S.1    Jeung, H.2    Aberer, K.3
  • 58
    • 1542317588 scopus 로고    scopus 로고
    • TiNA: A scheme for temporal coherency-aware in-network aggregation
    • M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. TiNA: A scheme for temporal coherency-aware in-network aggregation. In MobiDE, pages 69-76, 2003.
    • (2003) MobiDE , pp. 69-76
    • Sharaf, M.1    Beaver, J.2    Labrinidis, A.3    Chrysanthis, P.4
  • 59
    • 37849053357 scopus 로고    scopus 로고
    • Outlier detection in sensor networks
    • B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor networks. In MobiHoc, pages 219-228, 2007.
    • (2007) MobiHoc , pp. 219-228
    • Sheng, B.1    Li, Q.2    Mao, W.3    Jin, W.4
  • 64
    • 57149138994 scopus 로고    scopus 로고
    • Querying continuous functions in a database system
    • A. Thiagarajan and S. Madden. Querying continuous functions in a database system. In SIGMOD, pages 791-804, 2008.
    • (2008) SIGMOD , pp. 791-804
    • Thiagarajan, A.1    Madden, S.2
  • 65
    • 67649729549 scopus 로고    scopus 로고
    • Probabilistic inference over RFID streams in mobile environments
    • T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic inference over RFID streams in mobile environments. In ICDE, pages 1096-1107, 2009.
    • (2009) ICDE , pp. 1096-1107
    • Tran, T.1    Sutton, C.2    Cocci, R.3    Nie, Y.4    Diao, Y.5    Shenoy, P.6
  • 66
    • 33745526711 scopus 로고    scopus 로고
    • PAQ: Time series forecasting for approximate query answering in sensor networks
    • D. Tulone and S. Madden. PAQ: Time series forecasting for approximate query answering in sensor networks. In EWSN, pages 21-37, 2006.
    • (2006) EWSN , pp. 21-37
    • Tulone, D.1    Madden, S.2
  • 67
    • 49949101747 scopus 로고    scopus 로고
    • Predictive modeling-based data collection in wireless sensor networks
    • L. Wang and A. Deshpande. Predictive modeling-based data collection in wireless sensor networks. In EWSN, pages 34-51, 2008.
    • (2008) EWSN , pp. 34-51
    • Wang, L.1    Deshpande, A.2
  • 68
    • 34250735599 scopus 로고    scopus 로고
    • High-performance complex event processing over streams
    • E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams. In SIGMOD, pages 407-418, 2006.
    • (2006) SIGMOD , pp. 407-418
    • Wu, E.1    Diao, Y.2    Rizvi, S.3
  • 69
    • 1542280027 scopus 로고    scopus 로고
    • Query processing in sensor networks
    • Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR, 2003.
    • (2003) CIDR
    • Yao, Y.1    Gehrke, J.2
  • 70
    • 0031675839 scopus 로고    scopus 로고
    • Efficient retrieval of similar time sequences under time warping
    • B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences under time warping. In ICDE, pages 201-208, 1998.
    • (1998) ICDE , pp. 201-208
    • Yi, B.-K.1    Jagadish, H.2    Faloutsos, C.3
  • 72
    • 0141637082 scopus 로고    scopus 로고
    • StatStream: Statistical monitoring of thousands of data streams in real time
    • Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thousands of data streams in real time. In VLDB, pages 358-369, 2002.
    • (2002) VLDB , pp. 358-369
    • Zhu, Y.1    Shasha, D.2
  • 73
    • 34848890319 scopus 로고    scopus 로고
    • A weighted moving average-based approach for cleaning sensor data
    • Y. Zhuang, L. Chen, X. Wang, and X. Lian. A weighted moving average-based approach for cleaning sensor data. In ICDCS, page 38, 2007.
    • (2007) ICDCS , pp. 38
    • Zhuang, Y.1    Chen, L.2    Wang, X.3    Lian, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.