-
1
-
-
68049090827
-
Metabolic teamwork between gut microbes and host
-
Karasov WH, Carey HV. 2009. Metabolic teamwork between gut microbes and host. Microbe 4:323-328.
-
(2009)
Microbe
, vol.4
, pp. 323-328
-
-
Karasov, W.H.1
Carey, H.V.2
-
2
-
-
84931749060
-
Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores
-
Kohl KK, Dearing MD. 2012. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol. Lett. 15: 1008-1015. http://dx.doi.org/10.1111/j.1461-0248.2012.01822.x.
-
(2012)
Ecol. Lett.
, vol.15
, pp. 1008-1015
-
-
Kohl, K.K.1
Dearing, M.D.2
-
3
-
-
33745594044
-
The gut microbiota as a forgotten organ
-
O'Hara AM, Shanahan F. 2006. The gut microbiota as a forgotten organ. EMBO Rep. 7:688-693. http://dx.doi.org/10.1038/sj.embor.7400731.
-
(2006)
EMBO Rep.
, vol.7
, pp. 688-693
-
-
O'Hara, A.M.1
Shanahan, F.2
-
4
-
-
77956034740
-
Digestive challenges for vertebrate animals: microbial diversity, cardiorespiratory coupling, and dietary specialization
-
Barboza PS, Bennet A, Lignot JH, Mackie RI, McWhorter TJ, Secor SM, Skovgaard N, Sundset MA, Wang T. 2010. Digestive challenges for vertebrate animals: microbial diversity, cardiorespiratory coupling, and dietary specialization. Physiol. Biochem. Zool. 83:764-774. http://dx.doi.org/10.1086/650472.
-
(2010)
Physiol. Biochem. Zool.
, vol.83
, pp. 764-774
-
-
Barboza, P.S.1
Bennet, A.2
Lignot, J.H.3
Mackie, R.I.4
McWhorter, T.J.5
Secor, S.M.6
Skovgaard, N.7
Sundset, M.A.8
Wang, T.9
-
5
-
-
0034043320
-
Diet breadth of mammalian herbivores: nutrient versus detoxification constraints
-
Dearing MD, Mangione AM, Karasov WH. 2000. Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397-405. http://dx.doi.org/10.1007/s004420051027.
-
(2000)
Oecologia
, vol.123
, pp. 397-405
-
-
Dearing, M.D.1
Mangione, A.M.2
Karasov, W.H.3
-
6
-
-
30344436696
-
The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates
-
Dearing MD, Foley WJ, McLean S. 2005. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecol. Evol. Syst. 36:169-189. http://dx.doi.org/10.1146/annurev.ecolsys.36.102003.152617.
-
(2005)
Annu. Rev. Ecol. Evol. Syst.
, vol.36
, pp. 169-189
-
-
Dearing, M.D.1
Foley, W.J.2
McLean, S.3
-
7
-
-
0001151773
-
Strategies in herbivory by mammals: the role of plant secondary compounds
-
Freeland WJ, Janzen DH. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108:269-287. http://dx.doi.org/10.1086/282907.
-
(1974)
Am. Nat.
, vol.108
, pp. 269-287
-
-
Freeland, W.J.1
Janzen, D.H.2
-
8
-
-
0021992519
-
Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract
-
Allison MJ, Dawson KA, Mayberry WR, Foss JG. 1985. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141:1-7. http://dx.doi.org/10.1007/BF00446731.
-
(1985)
Arch. Microbiol.
, vol.141
, pp. 1-7
-
-
Allison, M.J.1
Dawson, K.A.2
Mayberry, W.R.3
Foss, J.G.4
-
9
-
-
0022768769
-
Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena
-
Jones RJ, Megarrity RG. 1986. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 63:259. http://dx.doi.org/10.1111/j.1751-0813.1986.tb02990.x.
-
(1986)
Aust. Vet. J.
, vol.63
, pp. 259
-
-
Jones, R.J.1
Megarrity, R.G.2
-
10
-
-
0032726894
-
Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov
-
Kageyama A, Benno Y, Nakase T. 1999. Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 49:1725-1732.
-
(1999)
Int. J. Syst. Evol. Microbiol.
, vol.49
, pp. 1725-1732
-
-
Kageyama, A.1
Benno, Y.2
Nakase, T.3
-
11
-
-
0034108235
-
Oxalate-degrading Enterococcus faecalis
-
Hokama S, Honma Y, Toma C, Ogawa Y. 2000. Oxalate-degrading Enterococcus faecalis. Microbiol. Immunol. 44:235-240. http://dx.doi.org/10.1111/j.1348-0421.2000.tb02489.x.
-
(2000)
Microbiol. Immunol.
, vol.44
, pp. 235-240
-
-
Hokama, S.1
Honma, Y.2
Toma, C.3
Ogawa, Y.4
-
12
-
-
77949423334
-
Microbial degradation of usnic acid in the reindeer rumen
-
Sundset MA, Barboza PS, Green TK, Folkow LP, Blix AS, Mathiesen SD. 2010. Microbial degradation of usnic acid in the reindeer rumen. Naturwissenschaften 97:273-278. http://dx.doi.org/10.1007/s00114-009-0639-1.
-
(2010)
Naturwissenschaften
, vol.97
, pp. 273-278
-
-
Sundset, M.A.1
Barboza, P.S.2
Green, T.K.3
Folkow, L.P.4
Blix, A.S.5
Mathiesen, S.D.6
-
13
-
-
84872535919
-
Xenobiotics shape the physiology and gene expression of the active human gut microbiome
-
Maurice CF, Haiser HJ, Turnbaugh PJ. 2013. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39-50. http://dx.doi.org/10.1016/j.cell.2012.10.052.
-
(2013)
Cell
, vol.152
, pp. 39-50
-
-
Maurice, C.F.1
Haiser, H.J.2
Turnbaugh, P.J.3
-
14
-
-
20444368468
-
Calcium oxalate in plants: formation and function
-
Franceschi VR, Nakata PA. 2005. Calcium oxalate in plants: formation and function. Annu. Rev. Plant Biol. 56:41-71. http://dx.doi.org/10.1146/annurev.arplant.56.032604.144106.
-
(2005)
Annu. Rev. Plant Biol.
, vol.56
, pp. 41-71
-
-
Franceschi, V.R.1
Nakata, P.A.2
-
15
-
-
0015460696
-
Halogeton poisoning of sheep: effect of high level of oxalate intake
-
James LF, Butcher JE. 1972. Halogeton poisoning of sheep: effect of high level of oxalate intake. J. Anim. Sci. 35:1233-1238.
-
(1972)
J. Anim. Sci.
, vol.35
, pp. 1233-1238
-
-
James, L.F.1
Butcher, J.E.2
-
17
-
-
0035174408
-
Contribution of dietary oxalate to urinary oxalate excretion
-
Holmes RP, Goodman HO, Assimos DG. 2001. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 59:270-276. http://dx.doi.org/10.1046/j.1523-1755.2001.00488.x.
-
(2001)
Kidney Int.
, vol.59
, pp. 270-276
-
-
Holmes, R.P.1
Goodman, H.O.2
Assimos, D.G.3
-
18
-
-
0036127828
-
Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defense?
-
Ruiz N, Ward D, Saltz D. 2002. Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defense? Funct. Ecol. 16:99-105. http://dx.doi.org/10.1046/j.0269-8463.2001.00594.x.
-
(2002)
Funct. Ecol.
, vol.16
, pp. 99-105
-
-
Ruiz, N.1
Ward, D.2
Saltz, D.3
-
19
-
-
34250800307
-
Food oxalate: factors affecting measurement, biological variation, and bioavailability
-
Massey LK. 2007. Food oxalate: factors affecting measurement, biological variation, and bioavailability. J. Am. Diet. Assoc. 107:1191-1194. http://dx.doi.org/10.1016/j.jada.2007.04.007.
-
(2007)
J. Am. Diet. Assoc.
, vol.107
, pp. 1191-1194
-
-
Massey, L.K.1
-
23
-
-
0025013875
-
The relation of clinical catastrophes, endogenous oxalate production, and urolithiasis
-
Conyers RAJ, Bals R, Rofe AM. 1990. The relation of clinical catastrophes, endogenous oxalate production, and urolithiasis. Clin. Chem. 36: 1717-1730.
-
(1990)
Clin. Chem.
, vol.36
, pp. 1717-1730
-
-
Conyers, R.A.J.1
Bals, R.2
Rofe, A.M.3
-
24
-
-
0022625471
-
Oxalate degradation by gastrointestinal bacteria from humans
-
Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV. 1986. Oxalate degradation by gastrointestinal bacteria from humans. J. Nutr. 116:455-460.
-
(1986)
J. Nutr.
, vol.116
, pp. 455-460
-
-
Allison, M.J.1
Cook, H.M.2
Milne, D.B.3
Gallagher, S.4
Clayman, R.V.5
-
25
-
-
0029945646
-
Reduction of oxalate content of foods by the oxalate degrading bacterium, Eubacterium lentum WYH-1
-
Ito H, Miura N, Masai M, Yamamoto K, Hara T. 1996. Reduction of oxalate content of foods by the oxalate degrading bacterium, Eubacterium lentum WYH-1. Int. J. Urol. 3:31-34. http://dx.doi.org/10.1111/j.1442-2042.1996.tb00626.x.
-
(1996)
Int. J. Urol.
, vol.3
, pp. 31-34
-
-
Ito, H.1
Miura, N.2
Masai, M.3
Yamamoto, K.4
Hara, T.5
-
26
-
-
29344474493
-
Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reactionbased detection system
-
Sidhu H, Enatska L, Ogden S, Williams WN, Allison MJ, Peck AB. 1997. Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reactionbased detection system. Mol. Diagn. 2:89-97. http://dx.doi.org/10.1016/S1084-8592(97)80015-X.
-
(1997)
Mol. Diagn.
, vol.2
, pp. 89-97
-
-
Sidhu, H.1
Enatska, L.2
Ogden, S.3
Williams, W.N.4
Allison, M.J.5
Peck, A.B.6
-
27
-
-
23244467099
-
Oxalate-degrading Providencia rettgeri isolated from human stools
-
Hokama S, Toma C, Iwanaga M, Morozumi M, Sagaya K, Ogawa Y. 2005. Oxalate-degrading Providencia rettgeri isolated from human stools. Int. J. Urol. 12:533-538. http://dx.doi.org/10.1111/j.1442-2042.2005.01083.x.
-
(2005)
Int. J. Urol.
, vol.12
, pp. 533-538
-
-
Hokama, S.1
Toma, C.2
Iwanaga, M.3
Morozumi, M.4
Sagaya, K.5
Ogawa, Y.6
-
28
-
-
3042606640
-
Oxalate degradation by intestinal lactic acid bacteria in dogs and cats
-
Weese JS, Weese HE, Yuricek L, Rousseau J. 2004. Oxalate degradation by intestinal lactic acid bacteria in dogs and cats. Vet. Microbiol. 101:161-166. http://dx.doi.org/10.1016/j.vetmic.2004.03.017.
-
(2004)
Vet. Microbiol.
, vol.101
, pp. 161-166
-
-
Weese, J.S.1
Weese, H.E.2
Yuricek, L.3
Rousseau, J.4
-
29
-
-
80051820927
-
Oxalate-degrading capabilities of lactic acid bacteria in canine feces
-
Ren Z, Pan C, Jiang L, Wu C, Liu Y, Zhong Z, Ran L, Ren F, Chen X, Wang Y. 2011. Oxalate-degrading capabilities of lactic acid bacteria in canine feces. Vet. Microbiol. 152:368-373. http://dx.doi.org/10.1016/j.vetmic.2011.05.003.
-
(2011)
Vet. Microbiol.
, vol.152
, pp. 368-373
-
-
Ren, Z.1
Pan, C.2
Jiang, L.3
Wu, C.4
Liu, Y.5
Zhong, Z.6
Ran, L.7
Ren, F.8
Chen, X.9
Wang, Y.10
-
30
-
-
0042707939
-
Oxalotrophic bacteria
-
Sahin N. 2003. Oxalotrophic bacteria. Res. Microbiol. 154:399-407. http://dx.doi.org/10.1016/S0923-2508(03)00112-8.
-
(2003)
Res. Microbiol.
, vol.154
, pp. 399-407
-
-
Sahin, N.1
-
31
-
-
77954283084
-
Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease
-
Abratt VR, Reid SJ. 2010. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv. Appl. Microbiol. 72:63-87. http://dx.doi.org/10.1016/S0065-2164(10)72003-7.
-
(2010)
Adv. Appl. Microbiol.
, vol.72
, pp. 63-87
-
-
Abratt, V.R.1
Reid, S.J.2
-
32
-
-
0035722208
-
Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration
-
Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, Pirovano F, Centi C, Ulisse S, Famularo G, De Simone C. 2001. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 60:1097-1105. http://dx.doi.org/10.1046/j.1523-1755.2001.0600031097.x.
-
(2001)
Kidney Int.
, vol.60
, pp. 1097-1105
-
-
Campieri, C.1
Campieri, M.2
Bertuzzi, V.3
Swennen, E.4
Matteuzzi, D.5
Stefoni, S.6
Pirovano, F.7
Centi, C.8
Ulisse, S.9
Famularo, G.10
De Simone, C.11
-
33
-
-
34548415876
-
Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria
-
Audic S, Robert C, Campagna B, Parinello H, Claverie JM, Raoult D, Drancourt M. 2007. Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Gen. 3:e138. http://dx.doi.org/10.1371/journal.pgen.0030138.
-
(2007)
PLoS Gen.
, vol.3
-
-
Audic, S.1
Robert, C.2
Campagna, B.3
Parinello, H.4
Claverie, J.M.5
Raoult, D.6
Drancourt, M.7
-
34
-
-
35448997400
-
Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus
-
Turroni S, Vitali B, Bendazzoli C, Candela M, Gotti R, Federici F, Pirovano F, Brigidi P. 2007. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J. Appl. Microbiol. 103:1600-1607. http://dx.doi.org/10.1111/j.1365-2672.2007.03388.x.
-
(2007)
J. Appl. Microbiol.
, vol.103
, pp. 1600-1607
-
-
Turroni, S.1
Vitali, B.2
Bendazzoli, C.3
Candela, M.4
Gotti, R.5
Federici, F.6
Pirovano, F.7
Brigidi, P.8
-
35
-
-
77955954783
-
Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl-CoA decarboxylase and formyl-CoA transferase genes
-
Turroni S, Bendazzoli C, Dipalo SCF, Candela M, Vitali B, Gotti R, Brigidi P. 2010. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl-CoA decarboxylase and formyl-CoA transferase genes. Appl. Environ. Microbiol. 76:5609-5620. http://dx.doi.org/10.1128/AEM.00844-10.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 5609-5620
-
-
Turroni, S.1
Bendazzoli, C.2
Dipalo, S.C.F.3
Candela, M.4
Vitali, B.5
Gotti, R.6
Brigidi, P.7
-
36
-
-
0014077703
-
Oxalate metabolism in the pack rat, sand rat, hamster, and white rat
-
Shirley EK, Schmidt-Nielsen K. 1967. Oxalate metabolism in the pack rat, sand rat, hamster, and white rat. J. Nutr. 91:496-502.
-
(1967)
J. Nutr.
, vol.91
, pp. 496-502
-
-
Shirley, E.K.1
Schmidt-Nielsen, K.2
-
37
-
-
0022230896
-
Oxalate digestability in Neotoma albigula and Neotoma mexicana
-
Justice KE. 1985. Oxalate digestability in Neotoma albigula and Neotoma mexicana. Oecologia 67:231-234. http://dx.doi.org/10.1007/BF00384290.
-
(1985)
Oecologia
, vol.67
, pp. 231-234
-
-
Justice, K.E.1
-
38
-
-
44849121639
-
Oxalate balance in fat sand rats feeding on high and low calcium diets
-
Palgi N, Ronen Z, Pinshow B. 2008. Oxalate balance in fat sand rats feeding on high and low calcium diets. J. Comp. Physiol. B 178:617-622. http://dx.doi.org/10.1007/s00360-008-0252-1.
-
(2008)
J. Comp. Physiol. B
, vol.178
, pp. 617-622
-
-
Palgi, N.1
Ronen, Z.2
Pinshow, B.3
-
40
-
-
80054961621
-
Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti)
-
Kohl KD, Weiss RB, Dale C, Dearing MD. 2011. Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis 54:47-54. http://dx.doi.org/10.1007/s13199-011-0125-3.
-
(2011)
Symbiosis
, vol.54
, pp. 47-54
-
-
Kohl, K.D.1
Weiss, R.B.2
Dale, C.3
Dearing, M.D.4
-
41
-
-
0023394035
-
Microbial degradation of oxalate in the gastrointestinal tract of rats
-
Daniel SL, Hartman PA, Allison MJ. 1987. Microbial degradation of oxalate in the gastrointestinal tract of rats. Appl. Environ. Microbiol. 53: 1793-1797.
-
(1987)
Appl. Environ. Microbiol.
, vol.53
, pp. 1793-1797
-
-
Daniel, S.L.1
Hartman, P.A.2
Allison, M.J.3
-
42
-
-
33745126324
-
Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins
-
Shimada T, Saitoh T, Sasaki E, Nishitani Y, Osawa R. 2006. Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. J. Chem. Ecol. 32:1165-1180. http://dx.doi.org/10.1007/s10886-006-9078-z.
-
(2006)
J. Chem. Ecol.
, vol.32
, pp. 1165-1180
-
-
Shimada, T.1
Saitoh, T.2
Sasaki, E.3
Nishitani, Y.4
Osawa, R.5
-
43
-
-
36448949002
-
Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T
-
Rodríguez H, Landete JM, Rivas BDL, Muñoz R. 2008. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem. 107:1393-1398. http://dx.doi.org/10.1016/j.foodchem.2007.09.067.
-
(2008)
Food Chem.
, vol.107
, pp. 1393-1398
-
-
Rodríguez, H.1
Landete, J.M.2
Rivas, B.D.L.3
Muñoz, R.4
-
44
-
-
33644955748
-
Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus
-
Azcarate-Peril MA, Bruno-Bárcena JM, Hassan HM, Klaenhammer TR. 2006. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus. Appl. Environ. Microbiol. 72:1891-1899. http://dx.doi.org/10.1128/AEM.72.3.1891-1899.2006.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, pp. 1891-1899
-
-
Azcarate-Peril, M.A.1
Bruno-Bárcena, J.M.2
Hassan, H.M.3
Klaenhammer, T.R.4
-
45
-
-
77952243141
-
QIIME allows analysis of high-throughput community sequencing data
-
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-336. http://dx.doi.org/10.1038/nmeth.f.303.
-
(2010)
Nat. Methods
, vol.7
, pp. 335-336
-
-
Caporaso, J.G.1
Kuczynski, J.2
Stombaugh, J.3
Bittinger, K.4
Bushman, F.D.5
Costello, E.K.6
Fierer, N.7
Peña, A.G.8
Goodrich, J.K.9
Gordon, J.I.10
Huttley, G.A.11
Kelley, S.T.12
Knights, D.13
Koenig, J.E.14
Ley, R.E.15
Lozupone, C.A.16
McDonald, D.17
Muegge, B.D.18
Pirrung, M.19
Reeder, J.20
Sevinsky, J.R.21
Turnbaugh, P.J.22
Walters, W.A.23
Widmann, J.24
Yatsunenko, T.25
Zaneveld, J.26
Knight, R.27
more..
-
46
-
-
34548293679
-
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
-
Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. http://dx.doi.org/10.1128/AEM.00062-07.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 5261-5267
-
-
Wang, Q.1
Garrity, G.M.2
Tiedje, J.M.3
Cole, J.R.4
-
47
-
-
84906944091
-
Herbivorous rodents (Neotoma spp.) harbor an abundant and active foregut microbiota
-
24 December
-
Kohl KD, Miller AW, Marvin J, Mackie R, Dearing MD. 24 December 2013. Herbivorous rodents (Neotoma spp.) harbor an abundant and active foregut microbiota. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12376.
-
(2013)
Environ. Microbiol
-
-
Kohl, K.D.1
Miller, A.W.2
Marvin, J.3
Mackie, R.4
Dearing, M.D.5
-
48
-
-
0036616381
-
Isolation, characterization and numerical taxonomy of novel oxalate-oxidizing bacteria
-
Sahin N, Gokler I, Tamer AU. 2002. Isolation, characterization and numerical taxonomy of novel oxalate-oxidizing bacteria. J. Microbiol. Seoul 40:109-118.
-
(2002)
J. Microbiol. Seoul
, vol.40
, pp. 109-118
-
-
Sahin, N.1
Gokler, I.2
Tamer, A.U.3
-
49
-
-
84866292359
-
Comparative faecal microbiota of dogs with and without calcium oxalate stones
-
Gnanandarajah JS, Johnson TJ, Kim HB, Abrahante JE, Lulich JP, Murtaugh MP. 2012. Comparative faecal microbiota of dogs with and without calcium oxalate stones. J. Appl. Microbiol. 113:745-756. http://dx.doi.org/10.1111/j.1365-2672.2012.05390.x.
-
(2012)
J. Appl. Microbiol.
, vol.113
, pp. 745-756
-
-
Gnanandarajah, J.S.1
Johnson, T.J.2
Kim, H.B.3
Abrahante, J.E.4
Lulich, J.P.5
Murtaugh, M.P.6
-
50
-
-
0016823320
-
Isolation and characterization of some new oxalate-decomposing bacteria
-
Chandra TS, Shethna YI. 1975. Isolation and characterization of some new oxalate-decomposing bacteria. Antonie Van Leeuwenhoek 41:101-111. http://dx.doi.org/10.1007/BF02565041.
-
(1975)
Antonie Van Leeuwenhoek
, vol.41
, pp. 101-111
-
-
Chandra, T.S.1
Shethna, Y.I.2
-
51
-
-
62749114303
-
Metabolic activity of probiotics-oxalate degradation
-
Murphy C, Murphy S, O'Brien F, O'Donoghue M, Boileau T, Sunvold G, Reinhart G, Kiely B, Shanahan F, O'Mahony L. 2009. Metabolic activity of probiotics-oxalate degradation. Vet. Microbiol. 136:100-107. http://dx.doi.org/10.1016/j.vetmic.2008.10.005.
-
(2009)
Vet. Microbiol.
, vol.136
, pp. 100-107
-
-
Murphy, C.1
Murphy, S.2
O'Brien, F.3
O'Donoghue, M.4
Boileau, T.5
Sunvold, G.6
Reinhart, G.7
Kiely, B.8
Shanahan, F.9
O'Mahony, L.10
-
52
-
-
60749117552
-
Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes
-
Balasubramanian S, Zheng D, Liu YJ, Fang G, Frankish A, Carriero N, Robilotto R, Cayting P, Gerstein M. 2009. Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biol. 10:R2. http://dx.doi.org/10.1186/gb-2009-10-1-r2.
-
(2009)
Genome Biol.
, vol.10
-
-
Balasubramanian, S.1
Zheng, D.2
Liu, Y.J.3
Fang, G.4
Frankish, A.5
Carriero, N.6
Robilotto, R.7
Cayting, P.8
Gerstein, M.9
-
53
-
-
34347395377
-
Genome sequence of a proteolytic (group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes
-
Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MT, Mitchell WJ, Carter AT, Bentley ST, Mason DR, Crossman L, Paul CJ, Ivens A, Wells-Bennik MHJ, Davis IJ, Cerdeño-Tárraga AM, Churcher C, Quail MA, Chillingworth T, Feltwell T, Fraser A, Goodhead I, Hance Z, Jagels K, Larke N, Maddison M, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, White B, Whithead S, Parkhill J. 2007. Genome sequence of a proteolytic (group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 17:1082-1092. http://dx.doi.org/10.1101/gr.6282807.
-
(2007)
Genome Res.
, vol.17
, pp. 1082-1092
-
-
Sebaihia, M.1
Peck, M.W.2
Minton, N.P.3
Thomson, N.R.4
Holden, M.T.5
Mitchell, W.J.6
Carter, A.T.7
Bentley, S.T.8
Mason, D.R.9
Crossman, L.10
Paul, C.J.11
Ivens, A.12
Wells-Bennik, M.H.J.13
Davis, I.J.14
Cerdeño-Tárraga, A.M.15
Churcher, C.16
Quail, M.A.17
Chillingworth, T.18
Feltwell, T.19
Fraser, A.20
Goodhead, I.21
Hance, Z.22
Jagels, K.23
Larke, N.24
Maddison, M.25
Moule, S.26
Mungall, K.27
Norbertczak, H.28
Rabbinowitsch, E.29
Sanders, M.30
Simmonds, M.31
White, B.32
Whithead, S.33
Parkhill, J.34
more..
-
54
-
-
84877146596
-
Impact of oxalic acid on rumen function and bacterial community in sheep
-
Belenguer A, Ben Bati M, Hervás G, Toral PG, Yáñez-Ruiz DR, Frutos P. 2013. Impact of oxalic acid on rumen function and bacterial community in sheep. Animal 7:940-947. http://dx.doi.org/10.1017/S1751731112002455.
-
(2013)
Animal
, vol.7
, pp. 940-947
-
-
Belenguer, A.1
Ben Bati, M.2
Hervás, G.3
Toral, P.G.4
Yáñez-Ruiz, D.R.5
Frutos, P.6
-
55
-
-
0029901748
-
Generation of a proton motive force by the anaerobic oxalate-degrading bacterium, Oxalobacter formigenes
-
Kuhner CH, Hartman PA, Allison MJ. 1996. Generation of a proton motive force by the anaerobic oxalate-degrading bacterium, Oxalobacter formigenes. Appl. Environ. Microbiol. 62:2494-2500.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 2494-2500
-
-
Kuhner, C.H.1
Hartman, P.A.2
Allison, M.J.3
-
56
-
-
32544437191
-
Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion
-
Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW. 2006. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 69:691-698. http://dx.doi.org/10.1038/sj.ki.5000162.
-
(2006)
Kidney Int.
, vol.69
, pp. 691-698
-
-
Hatch, M.1
Cornelius, J.2
Allison, M.3
Sidhu, H.4
Peck, A.5
Freel, R.W.6
-
57
-
-
79954481882
-
Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter
-
Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW. 2011. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am. J. Physiol. Gastrointest. Liver Physiol. 300:G461-G469. http://dx.doi.org/10.1152/ajpgi.00434.2010.
-
(2011)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.300
-
-
Hatch, M.1
Gjymishka, A.2
Salido, E.C.3
Allison, M.J.4
Freel, R.W.5
-
58
-
-
0032705805
-
Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy
-
Sidhu H, Schmidt ME, Cornelius JG, Van Thamilsel S, Khan SR, Hesse A, Peck AB. 1999. Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J. Am. Soc. Nephrol. 10:334-340.
-
(1999)
J. Am. Soc. Nephrol.
, vol.10
, pp. 334-340
-
-
Sidhu, H.1
Schmidt, M.E.2
Cornelius, J.G.3
Van Thamilsel, S.4
Khan, S.R.5
Hesse, A.6
Peck, A.B.7
-
59
-
-
0024408438
-
Two new species of anaerobic oxalatefermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples
-
Dehning I, Schink B. 1989. Two new species of anaerobic oxalatefermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Arch. Microbiol. 153:79-84. http://dx.doi.org/10.1007/BF00277545.
-
(1989)
Arch. Microbiol.
, vol.153
, pp. 79-84
-
-
Dehning, I.1
Schink, B.2
|