메뉴 건너뛰기




Volumn 511, Issue , 2014, Pages 72-81

Monthly streamflow forecasting using Gaussian process regression

Author keywords

Gaussian Process Regression; Hydrologic similarity; Machine learning theory; Probabilistic streamflow forecasting; Water energy interactions

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELS; GAUSSIAN PROCESS REGRESSION; HYDROLOGIC SIMILARITY; MULTIVARIATE GAUSSIAN DISTRIBUTIONS; POSTERIOR DISTRIBUTIONS; STREAMFLOW FORECASTING; WATER RESOURCES MANAGEMENT; WATER RESOURCES PLANNING AND MANAGEMENTS;

EID: 84893444157     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2014.01.023     Document Type: Article
Times cited : (220)

References (73)
  • 1
    • 0035324999 scopus 로고    scopus 로고
    • ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow
    • Barlow M., Nigam S., Berbery E.H. ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. J. Climate 2001, 14(9):2105-2128.
    • (2001) J. Climate , vol.14 , Issue.9 , pp. 2105-2128
    • Barlow, M.1    Nigam, S.2    Berbery, E.H.3
  • 2
    • 0035796622 scopus 로고    scopus 로고
    • Basin hydrologic response relations to distributed physiographic descriptors and climate
    • Berger K.P., Entekhabi D. Basin hydrologic response relations to distributed physiographic descriptors and climate. J. Hydrol. 2001, 247(3):169-182.
    • (2001) J. Hydrol. , vol.247 , Issue.3 , pp. 169-182
    • Berger, K.P.1    Entekhabi, D.2
  • 3
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
    • Beven K., Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249(1):11-29.
    • (2001) J. Hydrol. , vol.249 , Issue.1 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 4
    • 39449104740 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • Springer, New York
    • Bishop C.M. Pattern recognition and machine learning. Information Science and Statistics 2006, vol. xx:38. Springer, New York.
    • (2006) Information Science and Statistics , vol.20 , pp. 38
    • Bishop, C.M.1
  • 5
    • 0029413274 scopus 로고
    • Scale issues in hydrological modelling: a review
    • Blöschl G., Sivapalan M. Scale issues in hydrological modelling: a review. Hydrol. Process. 1995, 9(3-4):251-290.
    • (1995) Hydrol. Process. , vol.9 , Issue.3-4 , pp. 251-290
    • Blöschl, G.1    Sivapalan, M.2
  • 7
    • 84873051854 scopus 로고    scopus 로고
    • Streamflow modelling: a primer on applications. Approaches and challenges
    • Bourdin D.R., Fleming S.W., Stull R.B. Streamflow modelling: a primer on applications. Approaches and challenges. Atmos. Ocean 2012, 50(4):507-536.
    • (2012) Atmos. Ocean , vol.50 , Issue.4 , pp. 507-536
    • Bourdin, D.R.1    Fleming, S.W.2    Stull, R.B.3
  • 8
    • 70349505264 scopus 로고    scopus 로고
    • Time series analysis: forecasting and control
    • John Wiley, Hoboken, NJ, Wiley Series in Probability and Statistics
    • Box G.E.P., Jenkins G.M., Reinsel G.C. Time series analysis: forecasting and control. vol. xxiv 2008, 46. John Wiley, Hoboken, NJ.
    • (2008) vol. xxiv , pp. 46
    • Box, G.E.P.1    Jenkins, G.M.2    Reinsel, G.C.3
  • 10
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F.-J., Chen Y.-C. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 2001, 245(1-4):153-164.
    • (2001) J. Hydrol. , vol.245 , Issue.1-4 , pp. 153-164
    • Chang, F.-J.1    Chen, Y.-C.2
  • 11
    • 0036602796 scopus 로고    scopus 로고
    • Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability
    • Chiew F.H.S., McMahon T.A. Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol. Sci. J. 2002, 47(3):505-522.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.3 , pp. 505-522
    • Chiew, F.H.S.1    McMahon, T.A.2
  • 14
    • 33644551546 scopus 로고    scopus 로고
    • Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops
    • Duan Q., et al. Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. J. Hydrol. 2006, 320(1):3-17.
    • (2006) J. Hydrol. , vol.320 , Issue.1 , pp. 3-17
    • Duan, Q.1
  • 15
    • 0020870268 scopus 로고
    • Relation of field studies and modeling in the prediction of storm runoff
    • Dunne T. Relation of field studies and modeling in the prediction of storm runoff. J. Hydrol. 1983, 65(1):25-48.
    • (1983) J. Hydrol. , vol.65 , Issue.1 , pp. 25-48
    • Dunne, T.1
  • 16
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: theoretical formulation and practical implementation
    • Evensen G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 2003, 53(4):343-367.
    • (2003) Ocean Dyn. , vol.53 , Issue.4 , pp. 343-367
    • Evensen, G.1
  • 17
    • 36049032414 scopus 로고    scopus 로고
    • Statistical downscaling of GCM simulations to streamflow using relevance vector machine
    • Ghosh S., Mujumdar P. Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv. Water Resour. 2008, 31(1):132-146.
    • (2008) Adv. Water Resour. , vol.31 , Issue.1 , pp. 132-146
    • Ghosh, S.1    Mujumdar, P.2
  • 18
    • 84867040604 scopus 로고    scopus 로고
    • Gaussian Process priors with uncertain inputs - application to multiple-step ahead time series forecasting
    • MIT Press, Cambridge, Mass, S. Becker (Ed.)
    • Girard A., Rasmussen C.E., Quiñonero-Candela J., Murray-Smith R. Gaussian Process priors with uncertain inputs - application to multiple-step ahead time series forecasting. Advances in Neural Information Processing System 15 2003, 529-536. MIT Press, Cambridge, Mass. S. Becker (Ed.).
    • (2003) Advances in Neural Information Processing System 15 , pp. 529-536
    • Girard, A.1    Rasmussen, C.E.2    Quiñonero-Candela, J.3    Murray-Smith, R.4
  • 19
    • 0000796604 scopus 로고    scopus 로고
    • The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models
    • Gutman A., Iganatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19(8):1533-1543.
    • (1998) Int. J. Remote Sens. , vol.19 , Issue.8 , pp. 1533-1543
    • Gutman, A.1    Iganatov, A.2
  • 21
    • 84876733457 scopus 로고    scopus 로고
    • Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior
    • Herman J., Reed P., Wagener T. Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. Water Resour Res. 2013.
    • (2013) Water Resour Res.
    • Herman, J.1    Reed, P.2    Wagener, T.3
  • 22
    • 0037304429 scopus 로고    scopus 로고
    • ENSO and PDO effects on hydroclimatic variations of the Upper Colorado River basin
    • Hidalgo H.G., Dracup J.A. ENSO and PDO effects on hydroclimatic variations of the Upper Colorado River basin. J. Hydrometeorol. 2003, 4(1):5-23.
    • (2003) J. Hydrometeorol. , vol.4 , Issue.1 , pp. 5-23
    • Hidalgo, H.G.1    Dracup, J.A.2
  • 23
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh W.W., Tang B. Applying neural network models to prediction and data analysis in meteorology and oceanography. Br. Am. Meteorol. Soc. 1998, 79:1855-1870.
    • (1998) Br. Am. Meteorol. Soc. , vol.79 , pp. 1855-1870
    • Hsieh, W.W.1    Tang, B.2
  • 24
    • 0029413797 scopus 로고
    • Artificial neural-network modeling of the rainfall-runoff process
    • Hsu K.L., Gupta H.V., Sorooshian S. Artificial neural-network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 25
    • 33646532065 scopus 로고    scopus 로고
    • Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology
    • Kirchner J.W. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 2006, 42:W03S04. http://dx.doi.org/10.1029/2005WR004362.
    • (2006) Water Resour. Res. , vol.42
    • Kirchner, J.W.1
  • 26
    • 0029413779 scopus 로고
    • Quasi-linear geostatistical theory for inversing
    • Kitanidis P.K. Quasi-linear geostatistical theory for inversing. Water Resour. Res. 1995, 31(10):2411-2419.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2411-2419
    • Kitanidis, P.K.1
  • 28
    • 84855337401 scopus 로고    scopus 로고
    • Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed
    • Li H., et al. Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed. J. Geophys. Res.: Atmos. (1984-2012) 2011, 116(D24).
    • (2011) J. Geophys. Res.: Atmos. (1984-2012) , vol.116 , Issue.D24
    • Li, H.1
  • 29
    • 84876555101 scopus 로고    scopus 로고
    • Vegetation control on water and energy balance within the Budyko framework
    • Li D., Pan M., Cong Z., Zhang L., Wood E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 2013.
    • (2013) Water Resour. Res.
    • Li, D.1    Pan, M.2    Cong, Z.3    Zhang, L.4    Wood, E.5
  • 31
    • 0038404899 scopus 로고    scopus 로고
    • A step increase in streamflow in the conterminous United States
    • McCabe G.J., Wolock D.M. A step increase in streamflow in the conterminous United States. Geophys. Res. Lett. 2002, 29(24):2185.
    • (2002) Geophys. Res. Lett. , vol.29 , Issue.24 , pp. 2185
    • McCabe, G.J.1    Wolock, D.M.2
  • 32
    • 36649011805 scopus 로고    scopus 로고
    • Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology
    • McDonnell J.J., et al. Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour. Res. 2007, 43:W07301. 10.1029/2006WR005467.
    • (2007) Water Resour. Res. , vol.43
    • McDonnell, J.J.1
  • 33
    • 27844519343 scopus 로고    scopus 로고
    • Global pattern of trends in streamflow and water availability in a changing climate
    • Milly P.C.D., Dunne K.A., Vecchia A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438(17):347-350.
    • (2005) Nature , vol.438 , Issue.17 , pp. 347-350
    • Milly, P.C.D.1    Dunne, K.A.2    Vecchia, A.V.3
  • 34
    • 77952632411 scopus 로고    scopus 로고
    • Investigating the ability of a land surface model to simulate streamflow with the accuracy of hydrological models: a case study using MOPEX materials
    • Nasonova O.N., Gusev Y.M., Kovalev Y.E. Investigating the ability of a land surface model to simulate streamflow with the accuracy of hydrological models: a case study using MOPEX materials. J. Hydrometeorol. 2009, 10(5):1128-1150.
    • (2009) J. Hydrometeorol. , vol.10 , Issue.5 , pp. 1128-1150
    • Nasonova, O.N.1    Gusev, Y.M.2    Kovalev, Y.E.3
  • 35
    • 84856795413 scopus 로고    scopus 로고
    • A framework for hydrologic classification with a review of methodologies and applications in ecohydrology
    • Olden J.D., Kennard M.J., Pusey B.J. A framework for hydrologic classification with a review of methodologies and applications in ecohydrology. Ecohydrology 2012, 5(4):503-518.
    • (2012) Ecohydrology , vol.5 , Issue.4 , pp. 503-518
    • Olden, J.D.1    Kennard, M.J.2    Pusey, B.J.3
  • 36
    • 14644386885 scopus 로고    scopus 로고
    • Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 1-can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs?
    • Oudin L., Michel C., Anctil F. Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 1-can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs?. J. Hydrol. 2005, 303(1):275-289.
    • (2005) J. Hydrol. , vol.303 , Issue.1 , pp. 275-289
    • Oudin, L.1    Michel, C.2    Anctil, F.3
  • 37
    • 78649795018 scopus 로고    scopus 로고
    • Are seemingly physically similar catchments truly hydrologically similar?
    • Oudin L., Kay A., Andréassian V., Perrin C. Are seemingly physically similar catchments truly hydrologically similar?. Water Resour. Res. 2010, 46(11).
    • (2010) Water Resour. Res. , vol.46 , Issue.11
    • Oudin, L.1    Kay, A.2    Andréassian, V.3    Perrin, C.4
  • 38
    • 84857712554 scopus 로고    scopus 로고
    • Controls on hydrologic similarity: role of nearby gauged catchments for prediction at an ungauged catchment
    • Patil S., Stieglitz M. Controls on hydrologic similarity: role of nearby gauged catchments for prediction at an ungauged catchment. Hydrol. Earth Syst. Sci. 2012, 16(2):551-562.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , Issue.2 , pp. 551-562
    • Patil, S.1    Stieglitz, M.2
  • 40
    • 0001035614 scopus 로고
    • The estimation of annual run-off from meteorological data in a tropical climate
    • Pike J. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 1964, 2(2):116-123.
    • (1964) J. Hydrol. , vol.2 , Issue.2 , pp. 116-123
    • Pike, J.1
  • 41
    • 84893478991 scopus 로고    scopus 로고
    • PRISM Climate Group, PRISM, Last Oregon State University, Corvallis, OR (accessed 10.08.12).
    • PRISM Climate Group, 2012. PRISM, Last Oregon State University, Corvallis, OR (accessed 10.08.12). http://www.prism.oregonstate.edu.
    • (2012)
  • 42
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • Quiñonero-Candela J., Rasmussen C.E. A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 2005, 6:1939-1959.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1939-1959
    • Quiñonero-Candela, J.1    Rasmussen, C.E.2
  • 44
    • 79551489429 scopus 로고    scopus 로고
    • Gaussian processes for machine learning (GPML) toolbox
    • Rasmussen C.E., Nickisch H. Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 2010, 11:3011-3015.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3011-3015
    • Rasmussen, C.E.1    Nickisch, H.2
  • 46
    • 28244446739 scopus 로고    scopus 로고
    • Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
    • Reis D.S., Stedinger J.R., Martins E.S. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resour. Res. 2005, 41(10):W10419.
    • (2005) Water Resour. Res. , vol.41 , Issue.10
    • Reis, D.S.1    Stedinger, J.R.2    Martins, E.S.3
  • 47
    • 84863338492 scopus 로고    scopus 로고
    • A Bayesian approach to predictor selection for seasonal streamflow forecasting
    • Robertson D.E., Wang Q.J. A Bayesian approach to predictor selection for seasonal streamflow forecasting. J. Hydrometeorol. 2012, 13(1):155-171.
    • (2012) J. Hydrometeorol. , vol.13 , Issue.1 , pp. 155-171
    • Robertson, D.E.1    Wang, Q.J.2
  • 50
    • 33644546858 scopus 로고    scopus 로고
    • Criteria to select basins for hydrologic model development and testing
    • January 10-14, 2000, Amer. Meteor. Soc., Long Beach, CA
    • Schaake, J.C., Duan, Q., Smith, M., Koren, V., 2000. Criteria to select basins for hydrologic model development and testing. In: 15th Conference on Hydrology, January 10-14, 2000, Amer. Meteor. Soc., Long Beach, CA.
    • (2000) 15th Conference on Hydrology
    • Schaake, J.C.1    Duan, Q.2    Smith, M.3    Koren, V.4
  • 51
    • 34548459917 scopus 로고    scopus 로고
    • Gaussian process functional regression modeling for batch data
    • Shi J.Q., Wang B., Murray-Smith R., Titterington D.M. Gaussian process functional regression modeling for batch data. Biometrics 2007, (63):714-723.
    • (2007) Biometrics , Issue.63 , pp. 714-723
    • Shi, J.Q.1    Wang, B.2    Murray-Smith, R.3    Titterington, D.M.4
  • 52
    • 4143120142 scopus 로고    scopus 로고
    • Prediction in ungauged basins: a grand challenge for theoretical hydrology
    • Sivapalan M. Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrol. Process. 2003, 17(15):3163-3170.
    • (2003) Hydrol. Process. , vol.17 , Issue.15 , pp. 3163-3170
    • Sivapalan, M.1
  • 53
    • 0347413682 scopus 로고    scopus 로고
    • IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences
    • Sivapalan M., et al. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48(6):857-880.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.6 , pp. 857-880
    • Sivapalan, M.1
  • 54
    • 80054015539 scopus 로고    scopus 로고
    • Water cycle dynamics in a changing environment: Improving predictability through synthesis
    • Sivapalan M., Thompson S., Harman C., Basu N., Kumar P. Water cycle dynamics in a changing environment: Improving predictability through synthesis. Water Resour. Res. 2011, 47(10).
    • (2011) Water Resour. Res. , vol.47 , Issue.10
    • Sivapalan, M.1    Thompson, S.2    Harman, C.3    Basu, N.4    Kumar, P.5
  • 55
    • 0022264492 scopus 로고
    • Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared
    • Stedinger J.R., Tasker G.D. Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared. Water Resour. Res. 1985, 21(9):1421-1432.
    • (1985) Water Resour. Res. , vol.21 , Issue.9 , pp. 1421-1432
    • Stedinger, J.R.1    Tasker, G.D.2
  • 56
    • 84886722443 scopus 로고    scopus 로고
    • Predicting groundwater level changes using GRACE data
    • Sun A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49(9):5900-5912.
    • (2013) Water Resour. Res. , vol.49 , Issue.9 , pp. 5900-5912
    • Sun, A.Y.1
  • 57
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 58
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 2000, 5(2):156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 60
    • 70249138531 scopus 로고    scopus 로고
    • On the stationarity of annual flood peaks in the continental United States during the 20th century
    • Villarini G., Serinaldi F., Smith J.A., Krajewski W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 45(8):W08417.
    • (2009) Water Resour. Res. , vol.45 , Issue.8
    • Villarini, G.1    Serinaldi, F.2    Smith, J.A.3    Krajewski, W.F.4
  • 61
    • 0032442678 scopus 로고    scopus 로고
    • The regional persistence and variability of annual streamflow in the United States
    • Vogel R.M., Tsai Y., Limbrunner J.F. The regional persistence and variability of annual streamflow in the United States. Water Resour. Res. 1998, 34(12):3445-3459.
    • (1998) Water Resour. Res. , vol.34 , Issue.12 , pp. 3445-3459
    • Vogel, R.M.1    Tsai, Y.2    Limbrunner, J.F.3
  • 62
    • 0032813826 scopus 로고    scopus 로고
    • Regional regression models of annual streamflow for the United States
    • Vogel R.M., Wilson I., Daly C. Regional regression models of annual streamflow for the United States. J. Irrig. Drain. Eng. 1999, 125(3):148-157.
    • (1999) J. Irrig. Drain. Eng. , vol.125 , Issue.3 , pp. 148-157
    • Vogel, R.M.1    Wilson, I.2    Daly, C.3
  • 63
    • 36148948861 scopus 로고    scopus 로고
    • Catchment classification and hydrologic similarity
    • Wagener T., Sivapalan M., Troch P., Woods R. Catchment classification and hydrologic similarity. Geography Compass 2007, 1(4):901-931.
    • (2007) Geography Compass , vol.1 , Issue.4 , pp. 901-931
    • Wagener, T.1    Sivapalan, M.2    Troch, P.3    Woods, R.4
  • 64
    • 77952256628 scopus 로고    scopus 로고
    • The future of hydrology: an evolving science for a changing world
    • Wagener T., et al. The future of hydrology: an evolving science for a changing world. Water Resour. Res. 2010, 46(5):W05301.
    • (2010) Water Resour. Res. , vol.46 , Issue.5
    • Wagener, T.1
  • 65
    • 80053342308 scopus 로고    scopus 로고
    • Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States
    • Wang D., Hejazi M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47(10):W00J12.
    • (2011) Water Resour. Res. , vol.47 , Issue.10
    • Wang, D.1    Hejazi, M.2
  • 66
    • 79952232516 scopus 로고    scopus 로고
    • Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences
    • Wang Q.J., Robertson D.E. Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res. 2011, 47.
    • (2011) Water Resour. Res. , pp. 47
    • Wang, Q.J.1    Robertson, D.E.2
  • 67
    • 84881490079 scopus 로고    scopus 로고
    • Similarity between runoff coefficient and perennial stream density in the Budyko framework
    • Wang D., Wu L. Similarity between runoff coefficient and perennial stream density in the Budyko framework. Hydrol. Earth Syst. Sci. Disc. 2012, 9(6):7571-7589.
    • (2012) Hydrol. Earth Syst. Sci. Disc. , vol.9 , Issue.6 , pp. 7571-7589
    • Wang, D.1    Wu, L.2
  • 68
    • 67650292897 scopus 로고    scopus 로고
    • A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites
    • Wang Q., Robertson D., Chiew F. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res. 2009, 45(5):W05407.
    • (2009) Water Resour. Res. , vol.45 , Issue.5
    • Wang, Q.1    Robertson, D.2    Chiew, F.3
  • 69
    • 84862555880 scopus 로고    scopus 로고
    • Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers
    • Williams C.A., et al. Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 2012, 48(6):W06523.
    • (2012) Water Resour. Res. , vol.48 , Issue.6
    • Williams, C.A.1
  • 70
    • 84879437574 scopus 로고    scopus 로고
    • Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: implications for biofuel production
    • Xu X., Scanlon B.R., Schilling K., Sun A. Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: implications for biofuel production. J. Hydrol. 2013, 497(8):110-120.
    • (2013) J. Hydrol. , vol.497 , Issue.8 , pp. 110-120
    • Xu, X.1    Scanlon, B.R.2    Schilling, K.3    Sun, A.4
  • 71
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., Simonovic S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 1999, 214(1):32-48.
    • (1999) J. Hydrol. , vol.214 , Issue.1 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 72
    • 0034987502 scopus 로고    scopus 로고
    • Response of mean annual evapotranspiration to vegetation changes at catchment scale
    • Zhang L., Dawes W., Walker G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37(3):701-708.
    • (2001) Water Resour. Res. , vol.37 , Issue.3 , pp. 701-708
    • Zhang, L.1    Dawes, W.2    Walker, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.