메뉴 건너뛰기




Volumn , Issue , 2013, Pages 471-481

Researcher homepage classification using unlabeled data

Author keywords

Co training; Consensus maximization; Gradient descent

Indexed keywords

CO-TRAINING; CO-TRAINING ALGORITHM; CONTENT-BASED FEATURES; FOCUSED CRAWLING; GRADIENT DESCENT; NOVEL TECHNIQUES; TRAINING DATA SETS; UNLABELED DATA;

EID: 84893147440     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (45)
  • 1
    • 84898930761 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • M. F. Balcan, A. Blum, and K. Yang. Co-Training and Expansion: Towards Bridging Theory and Practice. In NIPS. 2005.
    • (2005) NIPS
    • Balcan, M.F.1    Blum, A.2    Yang, K.3
  • 4
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 6
    • 14344251008 scopus 로고    scopus 로고
    • Co-em support vector learning
    • U. Brefeld and T. Scheffer. Co-em support vector learning. In ICML, 2004.
    • (2004) ICML
    • Brefeld, U.1    Scheffer, T.2
  • 7
    • 0012906322 scopus 로고    scopus 로고
    • Focused crawling: A new approach to topic-specific web resource discovery
    • S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: a new approach to topic-specific web resource discovery. In WWW, 1999.
    • (1999) WWW
    • Chakrabarti, S.1    Van Den Berg, M.2    Dom, B.3
  • 8
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM TIST, 2, 2011.
    • (2011) ACM TIST , vol.2
    • Chang, C.-C.1    Lin, C.-J.2
  • 9
    • 80053456516 scopus 로고    scopus 로고
    • Automatic feature decomposition for single view co-training
    • M. Chen, K. Weinberger, and Y. Chen. Automatic feature decomposition for single view co-training. In ICML, 2011.
    • (2011) ICML
    • Chen, M.1    Weinberger, K.2    Chen, Y.3
  • 10
    • 80052418610 scopus 로고    scopus 로고
    • Multi-View learning in the presence of view disagreement
    • C. M. Christoudias, R. Urtasun, and T. Darrell. Multi-View learning in the presence of view disagreement. In UAI, 2008.
    • (2008) UAI
    • Christoudias, C.M.1    Urtasun, R.2    Darrell, T.3
  • 12
    • 79960522068 scopus 로고    scopus 로고
    • On identifying academic homepages for digital libraries
    • S. Das, C. L. Giles, P. Mitra, and C. Caragea. On identifying academic homepages for digital libraries. In JCDL, 2011.
    • (2011) JCDL
    • Das, S.1    Giles, C.L.2    Mitra, P.3    Caragea, C.4
  • 13
    • 84857527621 scopus 로고    scopus 로고
    • Optimal distributed online prediction using mini-batches
    • O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction using mini-batches. JMLR, 13, 2012.
    • (2012) JMLR , vol.13
    • Dekel, O.1    Gilad-Bachrach, R.2    Shamir, O.3    Xiao, L.4
  • 14
    • 57349122015 scopus 로고    scopus 로고
    • Learning from labeled features using generalized expectation criteria
    • G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expectation criteria. In SIGIR, 2008.
    • (2008) SIGIR
    • Druck, G.1    Mann, G.2    McCallum, A.3
  • 15
    • 79953214379 scopus 로고    scopus 로고
    • When does cotraining work in real data? Knowledge and Data Engineering
    • may
    • J. Du, C. Ling, and Z.-H. Zhou. When does cotraining work in real data? Knowledge and Data Engineering, IEEE Transactions on, may 2011.
    • (2011) IEEE Transactions on
    • Du, J.1    Ling, C.2    Zhou, Z.-H.3
  • 17
    • 14344263553 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data for multiclass text categorization
    • R. Ghani. Combining labeled and unlabeled data for multiclass text categorization. In ICML, 2002.
    • (2002) ICML
    • Ghani, R.1
  • 20
    • 33745800664 scopus 로고    scopus 로고
    • Fast webpage classification using url features
    • M.-Y. Kan and H. O. N. Thi. Fast webpage classification using url features. In CIKM, 2005.
    • (2005) CIKM
    • Kan, M.-Y.1    Thi, H.O.N.2
  • 23
    • 84878098426 scopus 로고    scopus 로고
    • The influence of class imbalance on cost-sensitive learning: An empirical study
    • X.-Y. Liu and Z.-H. Zhou. The influence of class imbalance on cost-sensitive learning: An empirical study. In ICDM, 2006.
    • (2006) ICDM
    • Liu, X.-Y.1    Zhou, Z.-H.2
  • 24
    • 52649115862 scopus 로고    scopus 로고
    • A general model for multiple view unsupervised learning
    • B. Long, P. S. Yu, and Z. M. Zhang. A general model for multiple view unsupervised learning. In SDM, 2008.
    • (2008) SDM
    • Long, B.1    Yu, P.S.2    Zhang, Z.M.3
  • 25
    • 56449123826 scopus 로고    scopus 로고
    • Simple, robust, scalable semi-supervised learning via expectation regularization
    • G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In ICML, 2007.
    • (2007) ICML
    • Mann, G.S.1    McCallum, A.2
  • 27
    • 0001673996 scopus 로고    scopus 로고
    • A comparison of event models for naive bayes text classification
    • A. McCallum and K. Nigam. A comparison of event models for naive bayes text classification. In AAAI, 1999.
    • (1999) AAAI
    • McCallum, A.1    Nigam, K.2
  • 29
    • 84976702763 scopus 로고
    • Wordnet: A lexical database for english
    • G. A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38, 1995.
    • (1995) Commun. ACM , vol.38
    • Miller, G.A.1
  • 30
    • 85136905861 scopus 로고    scopus 로고
    • Analyzing the effectiveness and applicability of co-training
    • K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In CIKM, 2000.
    • (2000) CIKM
    • Nigam, K.1    Ghani, R.2
  • 32
    • 0006009575 scopus 로고    scopus 로고
    • Learning to classify text from labeled and unlabeled documents
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text from labeled and unlabeled documents. In AAAI, 1998.
    • (1998) AAAI
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 33
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using em. Machine Learning, 39(2-3), 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 36
    • 61949425675 scopus 로고    scopus 로고
    • Web page classification: Features and algorithms
    • Feb.
    • X. Qi and B. D. Davison. Web page classification: Features and algorithms. ACM Comput. Surv., 41(2), Feb. 2009.
    • (2009) ACM Comput. Surv. , vol.41 , Issue.2
    • Qi, X.1    Davison, B.D.2
  • 38
    • 18744393584 scopus 로고    scopus 로고
    • Using urls and table layout for web classification tasks
    • L. K. Shih and D. R. Karger. Using urls and table layout for web classification tasks. In WWW, 2004.
    • (2004) WWW
    • Shih, L.K.1    Karger, D.R.2
  • 39
    • 33749243505 scopus 로고    scopus 로고
    • A Co-Regularization approach to semi-supervised learning with multiple views
    • V. Sindhwani, P. Niyogi, and M. Belkin. A Co-Regularization approach to semi-supervised learning with multiple views. In ICML, 2005.
    • (2005) ICML
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 40
    • 65449166085 scopus 로고    scopus 로고
    • Arnetminer: Extraction and mining of academic social networks
    • J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: extraction and mining of academic social networks. In KDD, 2008.
    • (2008) KDD
    • Tang, J.1    Zhang, J.2    Yao, L.3    Li, J.4    Zhang, L.5    Su, Z.6
  • 42
    • 84893127148 scopus 로고    scopus 로고
    • Web page classification exploiting contents of surrounding pages for building a high-quality homepage collection
    • Y. Wang and K. Oyama. Web page classification exploiting contents of surrounding pages for building a high-quality homepage collection. In ICADL, 2006.
    • (2006) ICADL
    • Wang, Y.1    Oyama, K.2
  • 43
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In ACL, 1995.
    • (1995) ACL
    • Yarowsky, D.1
  • 44
    • 84893073200 scopus 로고    scopus 로고
    • Pebl: Web page classification without negative examples
    • jan.
    • H. Yu, J. Han, and K.-C. Chang. Pebl: Web page classification without negative examples. IEEE TKDE, jan. 2004.
    • (2004) IEEE TKDE
    • Yu, H.1    Han, J.2    Chang, K.-C.3
  • 45
    • 33745456231 scopus 로고    scopus 로고
    • Technical report, Computer Sciences, University of Wisconsin-Madison
    • X. Zhu. Semi-Supervised learning literature survey. Technical report, Computer Sciences, University of Wisconsin-Madison, 2005.
    • (2005) Semi-Supervised Learning Literature Survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.