메뉴 건너뛰기




Volumn 69, Issue 3, 2013, Pages 594-605

An Optimal Test with Maximum Average Power While Controlling FDR with Application to RNA-Seq Data

Author keywords

Empirical Bayes; FDR control; Gene expression; Maximum average power; RNA seq

Indexed keywords

GENE EXPRESSION; STATISTICAL TESTS;

EID: 84892598640     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12036     Document Type: Article
Times cited : (18)

References (26)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Nature Precedings 11, R106.
    • (2010) Nature Precedings , vol.11
    • Anders, S.1    Huber, W.2
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57, 289-300.
    • (1995) Journal of the Royal Statistical Society: Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 3
    • 66349083834 scopus 로고    scopus 로고
    • Measuring differential gene expression by short read sequencing: Quantitative comparison to 2-channel gene expression microarray
    • Bloom, J., Khan, Z., Kruglyak, L., Singh, M., and Caudy, A. (2009). Measuring differential gene expression by short read sequencing: Quantitative comparison to 2-channel gene expression microarray. BMC Genomics 10, 221.
    • (2009) BMC Genomics , vol.10 , pp. 221
    • Bloom, J.1    Khan, Z.2    Kruglyak, L.3    Singh, M.4    Caudy, A.5
  • 4
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments
    • Bullard, J. H., Purdom, E. A., Hansen, K. D., and Dudoit, S. (2010). Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments. BMC Bioinformatics 11, 94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.A.2    Hansen, K.D.3    Dudoit, S.4
  • 6
  • 7
    • 77955298482 scopus 로고    scopus 로고
    • bayseq: Empirical bayesian methods for identifying differential gene expression in sequence count data
    • Hardcastle, T. J. and Kelly, K. A. (2010). bayseq: Empirical bayesian methods for identifying differential gene expression in sequence count data. BMC Bioinformatics 11, 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 8
    • 77957747432 scopus 로고    scopus 로고
    • Optimal tests shrinking both means and variances applicable to microarray data analysis
    • Hwang, J. T. G. and Liu, P. (2010). Optimal tests shrinking both means and variances applicable to microarray data analysis. Statistical Applications in Genetics and Molecular Biology 9, Article 36.
    • (2010) Statistical Applications in Genetics and Molecular Biology , vol.9 , pp. 36
    • Hwang, J.T.G.1    Liu, P.2
  • 9
  • 10
    • 84858606519 scopus 로고    scopus 로고
    • A comparison of statistical methods for detecting differentially expressed genes from rna-seq data
    • Kvam, V., Liu, P., and Si, Y. (2012). A comparison of statistical methods for detecting differentially expressed genes from rna-seq data. American Journal of Botany 99, 248-256.
    • (2012) American Journal of Botany , vol.99 , pp. 248-256
    • Kvam, V.1    Liu, P.2    Si, Y.3
  • 11
    • 84866634299 scopus 로고    scopus 로고
    • Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-seq data
    • Epub ahead of print, available as
    • Li, J. and Tibshirani, R. (2011). Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-seq data. Statistical Methods in Medical Research Epub ahead of print, available as http://www.ncbi.nlm.nih.gov/pubmed/22127579.
    • (2011) Statistical Methods in Medical Research
    • Li, J.1    Tibshirani, R.2
  • 12
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for rna-sequencing data
    • Li, J., Witten, D. M., Johnstone, I. M., and Tibshirani, R. (2012). Normalization, testing, and false discovery rate estimation for rna-sequencing data. Biostatistics 13, 523-538.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3    Tibshirani, R.4
  • 14
    • 62549109118 scopus 로고    scopus 로고
    • Testing significance relative to a fold-change threshold is a treat
    • MacCarthy, D. J. and Smyth, G. K. (2009). Testing significance relative to a fold-change threshold is a treat. Bioinformatics 25, 765-771.
    • (2009) Bioinformatics , vol.25 , pp. 765-771
    • MacCarthy, D.J.1    Smyth, G.K.2
  • 15
    • 50649089207 scopus 로고    scopus 로고
    • Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y. (2008). Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18, 1509-1517.
    • (2008) Genome Research , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 17
    • 33749995538 scopus 로고    scopus 로고
    • Quasi-likelihood and pseudo-likelihood are not the same thing
    • Nelder, J. A. (2000). Quasi-likelihood and pseudo-likelihood are not the same thing. Journal of Applied Statistics 27, 1007-1011.
    • (2000) Journal of Applied Statistics , vol.27 , pp. 1007-1011
    • Nelder, J.A.1
  • 18
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack, A., Robinson, M. D., and Young, M. D. (2010) From RNA-seq reads to differential expression results. Genome Biology 11, 220.
    • (2010) Genome Biology , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 21
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of rna-seq data
    • Robinson, M. D. and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of rna-seq data. Genome Biology 11, R25.
    • (2010) Genome Biology , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 22
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson, M. D. and Smyth, G. K. (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23, 2881.
    • (2007) Bioinformatics , vol.23 , pp. 2881
    • Robinson, M.D.1    Smyth, G.K.2
  • 23
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to sage data
    • Robinson, M. D., and Smyth, G. K. (2008). Small-sample estimation of negative binomial dispersion, with applications to sage data. Biostatistics 9, 321-332.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 25
    • 47649124124 scopus 로고    scopus 로고
    • A global view of gene activity and alternative splicing by deep sequencing of the kuman transcriptome
    • Sultan, M., Schulz, M., and Richard, H. (2008). A global view of gene activity and alternative splicing by deep sequencing of the kuman transcriptome. Science 321, 956-960.
    • (2008) Science , vol.321 , pp. 956-960
    • Sultan, M.1    Schulz, M.2    Richard, H.3
  • 26
    • 77951998724 scopus 로고    scopus 로고
    • Exploring plant transcriptomes using ultra highthroughput sequencing
    • Wang, L., Li, P., and Brutnell, T. P. (2010). Exploring plant transcriptomes using ultra highthroughput sequencing. Breifings in Functional Genomics 9 (2), 118-128.
    • (2010) Breifings in Functional Genomics , vol.9 , pp. 118-128
    • Wang, L.1    Li, P.2    Brutnell, T.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.